
Page 1 of 11

 UNIVERSITY OF OSLO

 Faculty of Mathematics and Natural Sciences

Exam in INF3430/4431

Day of exam: December 1. 2017

Exam hours: 09.00-13.00

This examination paper consists of 11 pages.

Appendices: 1

Permitted materials: All printed and written, as well as calculator

Make sure that your copy of this examination paper is complete before answering.

The task text consists of tasks 1-5, 9-10 (multiple choice tasks) to be answered in the

form attached to the text and tasks 6-8 and 11 that are answered on regular sheets.

The weight of each task is shown in parentheses behind the task number.

The tasks are independent so that they can be solved individually.

In the VHDL tasks, it is not necessary to repeat VHDL code in the answer which is

already in the task text.

Generally for task 1-5, 9-10:
Each task consists of a theme and some statements each in an uppercase letter. The task is

answered by marking a clear cross (X) in the right column for the correct answer option (i.e.

one statements is true) in the form in Appendix 1. There is always at least one correct mark

for each task, but there are often more correct marks. To get the best grade you should put

more crosses in a task if there are more correct statements. There is 1 point for each cross

where it should be a cross. It is given -1 points for each cross where it should not be a cross.

Lack of a cross where it should be a cross also gives -1 points. You can use the right column

in the task text for draft.

The form in Appendix 1 with your candidate number filled in is your answer.

Page 2 of 11

Task 1 (3 %)

The figure below shows combinational circuits with out1 equal to "and-and-xor", out2 equal

to "nand-nand-xnor", out3 equal to "or-or-xor", out4 equal to "nor-nor-xnor" and out5 equal

to "xor-xor-xnor".

A 4-input Xilinx

LUT with INIT

value equal to

"111E" (hex)

implements:

A and-and-xor

B nand-nand-xnor

C or-or-xor

D nor-nor-xnor

E xor-xor-xnor

Task 2 (3 %)
FPGA technology A When an FPGA is configured, the state of Block RAM

(BRAM) is unknown.

B Xilinx Block RAMs cannot be removed from the FPGA

to save space.

C The Xilinx BRAM can be used as a ROM.

D RAM can be made by Xilinx LUTs.

E In VHDL-2008, the sensitivity list of a combinatorial

process can be written as "all"; i.e. process(all).

in1

in4

in3

in2
out3

out1

in1

in4

in3

in2

or

in1

in4

in3

in2

out4

in1

in4

in3

in2

out2

out5

in1

in4

in3

in2

xor

xor

xor

and

and

xnor

nand

nand

xnor

xor

nor

nor

xnor

or

or

Page 3 of 11

Task 3 (3 %)
FPGA technology A MicroBlaze is a hard processor core.

B In Zynq-7000 circuits is it an ARM hard processor core.

C A soft processor core requires less space than a hard

processor core

D BFM (Bus Functional Model) can only be used in

testbenches.

E Gigabit Transceivers is soft cores.

Task 4 (3 %)

FPGA technology A It is easy to detect metastability by simulation.

B After a time in metastable mode, all flip-flops will always

return to '0'.

C A BUFG module can only be used for clock signals.

D Initial value after declaration of a signal of the type

std_logic will be 'U'.

E Two std_logic types with the values '0' and '1' which

drives the same signal gets the value 'Z' in simulation.

Task 5 (3 %)

Can variables in

VHDL be declared

in?

A Entity

B Architecture

C Process

D Function

E Procedure

Page 4 of 11

Task 6 (8%)

In this task, a MOORE type FSM will be created where the output q generates the numbers 4,

2, 5, 6, 7, 3, 1 and then generates the same sequence of numbers as long as the signal run is

active high ('1'). When the signal run is low ('0'), the output q must keep the last generated

number until the signal run becomes active high ('1') again and the generation continues.

When reset signal rst is active high, output q must have the value 4 which is the first value in

the sequence.

Implement the architecture of the arbitrary_sequence_gen module shown below in

synthesizable VHDL.

library ieee;

use ieee.std_logic_1164.all;

entity arbitrary_sequence_gen is

 port

 (

 rst : in std_logic;

 clk : in std_logic;

 run : in std_logic;

 q : out std_logic_vector(2 downto 0)

);

end entity arbitrary_sequence_gen;

architecture rtl of arbitrary_sequence_gen is

 < Write the declarations here >

begin

 < Create state register process here >

 < Create the next state process here >

end architecture rtl;

Task 7 (10%)

In this task, a Linear Feedback Shift Register (LFSR) module with synchronous clocked xor

feedback shall be designed with a 3 bit shift register as shown in the figure below.

orxor

FF
bit 2

FF
bit 1

FF
bit 0

q(2) q(1) q(0)

Page 5 of 11

Note that an xor operation is executed between bit 0 and bit 1, and the result of xor is entered

at the input of bit 2 in the 3-bit shift register.

The LFSR module with this feedback will generate the same number sequence as in the

previous task (i.e. 4,2,5,6,7,3,1, etc.) when the shift register starts the value commonly called

"seed" equal to 4 (i.e. binary "100").

Different seed values shall be loaded into the register with the seed signal value when the

signal load is active high (i.e. '1').

If the signal seed has the value zero (i.e. binary "000") which is an illegal value, a signal err

will be active high until a new seed value is entered into the shift register when the load is

active high again.

Implement the architecture to the LFSR module shown below in synthesizable VHDL.

library ieee;

use ieee.std_logic_1164.all;

entity lfsr is

 port

 (rst : in std_logic;

 clk : in std_logic;

 load : in std_logic;

 seed : in std_logic_vector(2 downto 0);

 run : in std_logic;

 q : out std_logic_vector(2 downto 0);

 err : out std_logic);

end entity lfsr;

architecture rtl of lfsr is

 < Declare the LFSR shift register here >

begin

 < Create the LFSR process here >

end architecture rtl;

Page 6 of 11

Task 8 (8%)

In the module computing shown below, the sum of the numbers a, b, c and d is calculated as

16 bits. The output result with16 bits is set to max value equal to x"FFFF" (i.e. all bits set to

'1') when the sum is greater than x"FFFF" and the signal max is set to '1' at the same time.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity compute is

 port

 (rst : in std_logic;

 clk : in std_logic;

 a : in std_logic_vector(15 downto 0);

 b : in std_logic_vector(15 downto 0);

 c : in std_logic_vector(15 downto 0);

 d : in std_logic_vector(15 downto 0);

 result : out std_logic_vector(15 downto 0);

 max : out std_logic);

end entity compute;

architecture rtl of compute is

begin

 process (rst, clk) is

 variable result_i : unsigned(17 downto 0);

 begin

 if rst = '1' then

 result <= (others => '0');

 max <= '0';

 elsif rising_edge(clk) then

 result_i := unsigned("00" & a) + unsigned("00" & b) +

 unsigned("00" & c) + unsigned("00" & d);

 if result_i > "001111111111111111" then

 result <= (others => '1');

 max <= '1';

 else

 result <= std_logic_vector(result_i(15 downto 0));

 max <= '0';

 end if;

 end if;

 end process;

end architecture rtl;

It turns out that there are timing errors during implementation in selected technology and with

the selected clock frequency. The architecture rtl has to be changed to a new architecture

pipelined_rtl that only has 1 add operation (i.e. + operator) and 1 comparison operation (i.e.

the result_i > "001111111111111111" operation) in each clock period to achieve the timing

requirement. Multiple add operations can be performed in parallel in each clock period.

Page 7 of 11

Implement this new architecture pipelined_rtl as shown below to the compute module (i.e.

with the same entity) in synthesizable VHDL.

architecture pipelined_rtl of compute is

begin

 < Implement the VHDL code here >

end architecture pipelined_rtl;

Task 9 (3 %)

How many registers

(i.e. flip-flops) have

the given

architecture rtl in

task 8

A 15 registers

B 16 registers

C 17 registers

D 18 registers

E 19 registers

 Task 10 (4 %)
How many registers

(i.e. flip-flops) have

the pipelined

architecture

pipelined_rtl that

was implemented in

task 8?

A 51 registers

B 52 registers

C 53 registers

D 68 registers

E 69 registers

Page 8 of 11

Task 11

a) (15%)
The ASM-diagram below shows one possible implementation of a function which generates

the wellknown Fibonacci number sequence:

𝐹(𝑛) = {
0, 𝑛 = 0
1, 𝑛 = 1

 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2), 𝑛 ≥ 2

run = ’1'

T

F

f0 ← 0

f1 ← 0

f2 ← 0

n ← 0

rst <= ’1'

idle_st

n=nmax

f0 ← f1

f1 ← f2

update_st

Fn ≥ 2

n=1

T

T

FT

calc_st

f2 ← 0f2 ← 1f2 ← f1 + f0

fn_st f1_st f0_st

n ← n+1

rdy

F
rdy_st

funcsel =1

F

T

Page 9 of 11

Implement the ASM-diagram above as a two-process state machine in synthesizable (RTL)

VHDL. You must define your own additional internal signals after need.

The Fibonacci state machine has the following entity:

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity fibonacci is

 generic

 (

 FIBWIDTH : natural := 32 --# bits in the generated Fibonacci number

);

 port

 (

 rst : in std_logic; --asynchronous reset

 clk : in std_logic; --clock

 run : in std_logic; --a run-puls of one clk cycle duration starts

 --the function generator

 funcsel : in std_logic_vector(2 downto 0); --function selection, "001"

 --selects Fibonacci

 nmax : in std_logic_vector(7 downto 0); --max num of Fibonacci numbers

 --which shall be generated

 inum : out std_logic_vector(7 downto 0); --Fibonacci number index n

 rdy : out std_logic; --a positiv puls of one clk cycle duration to

 --show that a new Fibonacci number n is ready

 fn : out std_logic_vector (FIBWIDTH-1 downto 0) --Fibonacci number n

);

end fibonacci;

architecture RTL_fibonacci of fibonacci is

 signal f0, next_f0 : unsigned(FIBWIDTH-1 downto 0);

 signal f1, next_f1 : unsigned(FIBWIDTH-1 downto 0);

 signal f2, next_f2 : unsigned(FIBWIDTH-1 downto 0);

 signal n, next_n : unsigned(7 downto 0);

--<write more declarations here>

Begin

--<write the VHDL RTL-code here>

--Concurrent statements

 inum <= std_logic_vector(n);

 fn <= std_logic_vector(f2);

End architecture RTL_fibonacci;

b) (15%)
Implement a self-checking test bench in VHDL which checks the correctness of the first 20

numbers of which the Fibonacci state machine generates

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 f17 f18 f19

0 1 1 2 3 5 8 13 21 34 45 89 144 233 377 610 987 1597 2584 4181

You can assume that you have the first 20 (n=0-19) Fibonacci numbers stored in the test

bench internal signal myfasit defined as:

constant MY_NMAX : natural:= 20;

type fibfasit is array (0 to MY_NMAX-1) of natural;

signal myfasit : fibfasit := (0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,

610,987,1597,2584,4181);

Page 10 of 11

c) (6%)
Modify the ASM-diagram to the state machine described in a) to a Mealy machine. Doing this

shall reduce the latency in the state machine with two clock periodes.

d) (10%)
Make an ASM diagram as a Mealy state machine for the module SRAM_write_ctrl, see

the figure below.

SRAM_write_ctrl ‘s main task is to store the Fibonacci numbers into a SRAM when they

are generated. The Fibonacci index number inum, is used as the SRAM write address

Fibonacci, SRAM_write_ctrl and SRAM_read_ctrl (which should not be

implemented) are all parts in system to make optimized functions in an embedded

microprocessor system.

Fibonacci

inum

rdy

fn

rst

clk

run

funcsel

rst

clk

run

funcsel

SRAM_write_ctrl
waddrinum

rdy we_n

rst

clk

run

funcsel

wdata

rdata

data

addr

External SRAM

module

we_n

rd_n

cs_n

data

addr

waddr_sel

Embedded

μprocessor

rst

clk

run

funcsel

raddrrdata Addressmultiplexer

Tristate-buffer

Input-buffer

we_n

nmax

nmax

nmax

SRAM_read_ctrl

rst

clk

run

funcsel

raddr

rdata

raddr

rd_n

nmax

rdata

waddr_sel

The signals rd_n, we_n and cs_n are all active low.

Page 11 of 11

-don’t care-

0

0

clk

rdy

run

waddr\n

inum\n

fn\f2

funcsel

1 2 3 4 5 6 7 - don’t care -

1 2 3 4 5 6 7

0

nmax

- don’t care -

8

- don’t care --don’t care-

feks 20

Fibonacci entity-signals (example shows sequence for nmax=8)

1 2 3 5 8 13

we_n

0 1 1 2 3 5 8 13 ZZZZZZZZZdata

cs_n (connected to ’0' (GND) at SRAM

waddr_sel

1

SRAM signals (write sequence)

Please notice that the above timing diagram follows the timing of the state machine described

in 11c)

The behavior of SRAM_write_crtl can be summarized as follows:

1. The write-function is started when SRAM_write_ctrl checks that the input-signals

run and funcsel are ‘1’ and «001» respectively. Then the signal waddr_sel is

set to active ‘1’. waddr_sel controls the address multiplexer such that waddr

becomes the SRAM active address (please look at the figure on the page 10). It is very

important that waddr_sel is active until all the Fibonacci numbers are stored.

2. Then it waits for the rdy-signal to be active high as an indication of that a new

Fibonacci number is ready to be stored

3. In the clock period after that rdy has gone active high, we_n shall go active low for

one clock period. The data is then stored in the address waddr(addr) at the rising

edge of we_n. In this state change the write address waddr, is assigned inum (e.g.

the next write address, see the timing diagram for details)

4. Item 2) og 3) is then repeated until all the Fibonacci numbers are stored, i.e. nmax

number of write operations.

e) (6%)
Implement a process in VHDL which describes the tristate-buffer in the figure on page 10.

You shall use wdata and we_n signals shown in the figure as inputs.

Appendix 1

Appendix 1.
INF3430/INF4431. Answers for candidate #: ________

Oppgave A B C D E

1

2

3

4

5

9

10

