
IN3160 IN4160

Diagrams, Reset circuits, ASMD/ desing example
Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for

design and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Be able to read, use and create -diagrams
• Timing-/ waveform-

• Datapath-

• Block-

• State-

• ASM-,

• ASMD

• Know the purpose of reset circuits
• Why do we reset at all?

• What are potential pitfalls for reset handling?

• Practice in reading code
• Design considerations

Next lesson: Microcoded FSMs

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Wave diagrams

• When do we read clocked signals?

• When does assignment occur?

• Does phase matter?

4

Basic wave diagram layout

• Undefined values are usually hatch-patterned

• Single bit signals

– Are usually displayed as high (‘1’) or low (‘0’)

– Defined signals of arbitrary values are usually

shown as an area without hatching

• Can be named (here a, b)

• Multi-bit is usually shown as an area

– Values or names are often used

– Multi-bit vector vs single-bit signal
• Sometimes you must use context to understand which is which.

• Edges

– Both vertical and slanted edges mean the same.
• Hand drawing mostly vertical…

– Normally sequential logic relate to the rising_edge

– RTL-simulation of sequential logic:
• Signals are read when edge occurs

• Signals are assigned immediately after the edge
5

Basic wave diagram layout

• Combinational logic (CL) responds immediately when input changes

6

• Sequential logic (clocked circuits)

– responds to the input status present when the clock edge occurs.

– output is changed immediately after the clock edge occurs.

• Unless specific timing information is given

Waveform combinational

• Combinational response is immediate in a waveform.

– Timing diagrams will show gate delays

– Clock does not matter

7

Sequential logic, rising_edge

8

– Look at what the input status was when the clock edge occurs.

• Here: The b-c pulse activates q for one whole clock cycle

– even though (a and b) is high for a shorter duration

• Only what is present when the clock edge occurs matters

Sequential logic, falling_edge

9

• Here: The b-c pulse is too short to activate r

– (a and b) is low on the next falling edge

Timing diagrams

• = Waveforms with timing information for a specified circuit.

– Typically found in a data sheets

• Printed circuit boards (PCBs),

• components (chips)

• communication protocol standards

– Can be generated when doing post-synthesis simulation.

– Useful…
• .. when considering setup and hold timing requirements in a system

– selecting circuits for a PCB (Printed Circuit Board)

• .. when optimizing data-flow circuitry..

– High performance ASIC design

• So far today: no timing information given (only RTL sim)
10

Block diagrams

• Shows how modules are

connected or communicate

– Level of detail may vary

– May include
• digital and analog components

• Suited for system level overview

– Or partial overview

– May be used for connection

11

self test system

d0

d1

4

4

seg7ctrl

abcdefg_n

7

c

self test unit

d1

d0

Second
tick

generator

ROM

control
logic

TI DRV8305 Functional Block Diagram
Oblig 6 diagram

Block diagrams

• Many variants…

– Entire- or parts of systems

– HW block diagrams tend to

be more detailed than those

used for other purposes

(SW, business, …)

• Usually the first diagrams

drawn in a design process
– Several may be added and

edited later

• Almost always present in

design documentation.

12

https://commons.wikimedia.org/wiki/File:Windows_2000_architecture.png

↑ Zedboard Users guide

Datapath Diagrams

• A specialised block diagram that show how data

moves within a system or module.

• Should normally contain

– How data travels between modules or functional units

– Registers (flipflops) used for storing data (not FSM -

registers)

– Bit widths for each path

• Usually direction of travel is from left to right

• Modules, such as FSMs will contain registers,

however these registers are considered control,

and not a part of the datapath.

– Ie. A processor may have many states but data still

moves through the pipeline one stage at a time.

– (Thus we have non datapath modules using clk.)

13

ExtImm

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

A RD

Data

Memory

WD

WE
PC1

0

PC'

In
s
tr 19:16

15:12

11:0

SrcB

ALUResult ReadData

SrcA

PCPlus4

CLK

A
LU

PCPlus8
R15+

4

RA1

Extend

 RegWritePCSrc ALUControl
1 1 00

ExtImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register

File

0

1

A RD

Data

Memory

WD

WE

1

0

PCF1

0

PC'

In
s
trD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

ResultW

CLK

A
LU

PCPlus8

R15

3:0

+

4

15

RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

In
s
trF

ALUOutM ALUOutW

WA3E WA3M WA3WWA3D

Datapath diagrams

• Often used to describe parts of an architecture

• RTL logic can be represented using datapath diagrams

– It is not necessarily the best representation…

• FSMs are better described using ASM diagrams…

• Counters..

• LFSR..

• Drawing a datapath diagram will in some cases be a very

efficient way to gain understanding..

– => Pipelining

• Example: Exam 2021, Assignment 6 (next page)-
14

D

CLK

Q

Output
CL

State
CL

D

CLK

QCLK

Input
synchronizer

Output
synchronizer

Example: Exam 2021

Assignment 6, «Pipelining»
• The pipelined module entity is described above.

• In this assignment a module which calculates result = a+b+c shall

be implemented.

• In order to meet timing closure at the required frequency, pipelining

shall be used.

• All input are synchronized to the clock signal clk.

• Reset can be either synchronous or asynchronous.

• The implementation shall be synchronous to the clock signal clk.

• All output should be driven by registers to avoid propagating

hazards.

• The computation shall use unsigned arithmetic operation on the

operands a, b and c.

• When the start signal is high the computation shall start, and the

result_valid signal shall be high when valid data is present on the

result signal.

• Implement the architecture for the pipelined module. 15

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity pipelined is

port (

clk : in std_logic;

rst : in std_logic;

a : in std_logic_vector(7 downto 0);

b : in std_logic_vector(7 downto 0);

c : in std_logic_vector(7 downto 0);

result : out std_logic_vector(9 downto 0);

start : in std_logic;

result_valid : out std_logic

);

end entity pipelined;

• We read this as the control signal

shall be pipelined along with the data

– It is not necessary to block computation

when there is no start signal.

• NOTE: It does not make sense to

pipeline unless a, b, c and the control

signal follows each other.

– Ie: expect new data each clock cycle

• Make your own datapath diagram for

this task (2 min)!

Ex2021-pipelining

• VHDL code may come

in many flavours:

16

architecture RTL of pipelined is
begin
pipeline: process(rst, clk) is
variable r_start : std_logic;
variable r_c : unsigned(7 downto 0);
variable r_ab : unsigned(8 downto 0);

begin
if rst then
r_start := '0';
r_c := (others => '0');
r_ab := (others => '0');
result <= (others => '0');
result_valid <= '0';

elsif rising_edge(clk) then
-- Note: Variables must be used _before_ being
-- assigned to form registers...
result <= std_logic_vector("00" & r_c + "0" & r_ab);
result_valid <= r_start;
r_start := start;
r_ab := ("0" & unsigned(a) + "0" & unsigned(b));
r_c := unsigned(c);

end if;
end process;

end architecture RTL;

architecture RAW of pipelined is
signal r_c : unsigned(7 downto 0);
signal r_ab : unsigned(8 downto 0);
signal r_start : std_logic;

begin
r_start <= '0' when rst else start when rising_edge(clk);
result_valid <= '0' when rst else r_start when rising_edge(clk);
r_ab <=(others => '0') when rst else ("0" & unsigned(a) + "0" & unsigned(b)) when rising_edge(clk);
r_c <= (others => '0') when rst else (unsigned(c)) when rising_edge(clk);
result <= (others => '0') when rst else std_logic_vector("00" & r_c + "0" & r_ab) when rising_edge(clk);

end architecture RAW;

a

b

c

+

r_ab

r_c

+

start r_start result_valid

result

9

8

8

8

8

10 10

architecture

9

• Getting to this code should be doable when having

the diagram…

• Common mistakes:

– Forgetting to put c in pipeline before calculating step 2.

– Believing start shall be valid for 3 clock cycles…

– Attempting SW-style loops(!)..

• Think of VHDL as a circuit description language…

FSMs and their diagrams

• Datapath shows

– Moore vs Mealy machine

– Synchronizers

– …

• State- and ASM diagrams

– Shows state transitions

• conditions (and priority)

– Output

– Register operations (ASMD)

17

D

CLK

Q
Combinational

logic

State

Output

Input

Combinational
logic

D

CLK

Q

Output
CL

State
CL

D

CLK

QCLK

Input
synchronizer

Output
synchronizer

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

x <= 1

S1

A=1T F

S3

B=1T F

A=1T F

y <= 1

x <= 0

S2

State diagram

• States

• Transitions between states

• Beside transition arc:

– Descision parameter

– / Mealy output

• Inside bubble:

– Moore output

• Frequently used, but not always with all

parameters.

• Note: Default values often omitted

– Here: default: x, y = 0 (boolean false)
18

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

ASM (Algorithmic State Machine) block

• The state box represents a state in the FSM,

– State based output is shown inside

(i.e. the Moore outputs).

• The decision box tests an input condition to

determine the exit path of the current ASM

block.

• A conditional output box (“Mealy box”)

– lists conditionally asserted signals.

– Can only be placed after an exit path of a decision box

– (i.e. the Mealy outputs that depends on the state and

input values).

19

«Datapath» FSM

• Datapath is described by a

function rather than a table

– Counters

– Mathematical operations

– Shift registers

– Etc.

• We usually divide into

control FSM and Datapath

20

Control FSM

D

CLK

Q

f2

f1

control input control output

status command

Datapath

data input data output

registers
r1, r2, ...

«Register operations» in data-path FSM (FSMD)

-and how to deal with it
• Common notations for register operations:

– on clock edge we increment r1

– on clock edge we update r1 based on a function of register outputs

– on clock edge, set r1 to r2+r3

21

r1 ← r1 + 1

r1 ← f(r1,r2)

r1 ← r2 + r3

FSM

D

CLK

Q

Output
CL

State
CL

D

CLK

Q

D

CLK

Q

D

CLK

Q

next_r1

next_r2

next_r3

r1

r2

r3

+1

+

f(r1,r2)
CL

This notation can be confusing, as it implies

one clock delay if it is put into an ASM chart.

Solution:
Use ‘←’ for datapath only (not for FSM)

Know that ‘←’ implies the use of registers that

are not a part of the state machine

Other drawings or schematics

• System sketches, drawings

– Usually used to display a concept or an idea

– Can be anything (vague block diagram..?)

• Circuit diagrams

– Show how the current flows in a circuit

– Netlists can be made from VHDL

• (and then turned into circuit diagrams)

22

coin_sens

accept_coin
(el.mag. actuator)

Coin type
detector

Bill
dispenser

Coin
dispenser

Control system

IN3160

Reset circuits

Synchronous or Asynchronous reset?

Source: Steve Kilts: Advanced FPGA Design. 2007

IN3160

24

Outline

• Combinational logic and floating pins

• Why reset?

• Asynchronous reset

• Synchronous reset

• Reset circuits

Combinational logic and I/O pins

• No need for reset circuitry for CL

– No values are stored in CL

– Setting the input will give the desired output

• However... avoid floating gates

– Floating gates may cause power surges and noise

– All input pins should be driven
• Potentially unconnected inputs should be pulled high or low

– Pull-up or pull-down on PCB or

– FPGAs may have internal pull up/down circuitry for IO-pins.
» Can be a life saver… (Product/ project / etc).

25

PCB

FPGA

R

R

Why reset?

• Avoid unpredictable behavior during startup

– Metastability creating unpredictable results
• Both in our system and surrounding systems

– Random register values may lead to undesired or illegal states
• Lockup – states with no exit

• undesired output can have unpleasant consequenses

• To get out of illegal states

– Unpredicted behaviour may lead to illegal states

– Noise
• Crosstalk / EMP

• Radiation - both thermal and radioactive

• Floating gates

• ... To ensure verifiable predictability ...
26

Synchronous reset

• Externally activated resets are per definition

asynchronous

– Synchronization is needed.

• Synchronous reset ‘and flip-flop input

– Added logic can add to critical path

– FPGA primitives may have this option built in.

• Reset pulses coming from faster clock

domains may be missed entirely.

27

next_q <= '0' when reset else d;

q <= next_q when rising_edge(clk);

too short reset

clk

reset

d

q

Tsetup Thold

Never reset

D Q
reset

d

clk

q

Asynchronous reset

• Asynchronous assertion will always trigger
– Reset duration must be longer than setup+hold...

• Asynchronous deassertion may cause

metastability

– Deassertion during setup/hold period

28

reset deassertion issue

clk

reset

Metastable

Tsetup Thold

d

q

q <= '0' when reset else d when rising_edge(clk);

D Q

res

d

clk

q

reset

Reset circuit(s)

– Asynchronous assertion,

Synchronous deassertion

• Short reset pulses will trigger

• 2FF mitigates metastability
– More in clock domain crossing lecture…

– Pitfalls?

• Hazards => random reset

• This circuit should not be used

unless external reset is hazard-free.

– Multiple sources for reset?

• Ensure resetpulses are long enough

• Use Synchronous reset

– 2FF when crossing domains 29

D Q

res

external
reset

D Q

res

clk

D Q

res

D Q

res

 reset synchronizer

system flip-flops

ff1 <= '0' when ext_reset else '1' when rising_edge(clk);

ff2 <= '0' when ext_reset else ff1 when rising_edge(clk);

reset <= not ff2;

clk

ext_reset

ff1

ff2

reset

Resets in IN3160

30

• All designs should start in a known state

– Predefined values for all registers, no metastability.

– Well implemented reset functionality ensures this.

• Can be invoked both at start and later

• The FPGAs we use are RAM based and

– will always start in a predictable configuration

– => We can start without using reset

• Default state is ‘0’ (the FPGA’s we use)

• Not using reset at start is an exception

– Reset functionality should always be implemented

– There is no guarantee for (other) designs to be safe without implicit initialization

– If we do not have a predefined source for reset signals, use one button…

Reset summary

• External reset is asynchronous

– Should be synchronized to avoid causing metastability.

• It is OK to use asynchronous reset once synchronized…

– Once synchronized, synchronous reset is perfect…

• Some FPGA primitives prefer synch reset only.

• Reset pulse must be long enough for reset circuitry
(depends on technology / logic family, not clk frequency..)

31

Non-FSM example with ASMD diagram

(Theory covered earlier)

architecture doulos_model_solution of dec_count is

constant nibble_max : Unsigned(3 downto 0) := "1111";

constant decade_max : Unsigned(3 downto 0) := "1001";

constant zero_nibble : Unsigned(3 downto 0) := "0000";

constant zero_byte : Unsigned(7 downto 0) := "00000000";

signal Q : Unsigned(7 downto 0);

begin

process (Clock, Reset)

begin

if Reset = '0' then
Q <= zero_byte;

elsif RISING_EDGE(Clock) then

if Enable = '0' then
if Load = '0' then
Q <= Unsigned(Data);

elsif (Mode = '0' and Q(3 downto 0) /= nibble_max) or

(Mode = '1' and Q(3 downto 0) /= decade_max) then

Q(3 downto 0) <= Q(3 downto 0) + 1;

else

Q(3 downto 0) <= zero_nibble;

if (Mode = '0' and Q(7 downto 4) /= nibble_max) or

(Mode = '1' and Q(7 downto 4) /= decade_max) then

Q(7 downto 4) <= Q(7 downto 4) + 1;

else

Q(7 downto 4) <= zero_nibble;

end if;

end if;

end if;

end if;

end process;

count <= Std_logic_vector(Q);

end;

entity dec_count is

port (

Clock,

Reset,

Enable,

Load,

Mode : in Std_logic;

Data : in Std_logic_vector(7 downto 0);

Count : out Std_logic_vector(7 downto 0));

end;

Critique design

• Readability

• Uses negative logic

• «Mode» requires explanation

• Portability

• Asynchronous reset

Critique implementation

• Readability

• Mix of CL and register storage

• If-based…

• CL style assignment in

clocked process

• Maintainability

• Not scaleable

• Duplicate code

• For each nibble

Enable Load Mode Next Count

0 0 X Data

0 1 0 Count+1
(bin)

0 1 1 Count+1
(dec)

1 X X Count

Example: Decade counter

Decade counter

• A new slightly different design:

– Synchronous reset

– High and low indicators

– Hazard free output

• all output in registers

– Positive logic
• enable

• load

• decade (nbinary)

• up (ndown)

– Generic ?
• Will be bound by 4bit nibble size

34

• New implementation

– Separate CL and register assignment

• But first:

– Diagrams & tables

• Entity

• ASMD

– Algorithmic state machine with data path

8 bit decade counter

• load, up/down, dec/bin

– Indicates function

• High/low signal

35

enable load decade up next_count

0 X X X count

1 1 X X data

1 0 0 1 count+1 (bin)

1 0 0 0 count-1 (bin)

1 0 1 1 count+1 (dec)

1 0 1 0 count-1 (dec)

decade count high low

X 0x00 0 1

0 0x01-0xFE 0 0

0 0xFF 1 0

1 0x01-0x98 0 0

1 0x99 1 0

1 0xA0-0xFF 1 1

• Counter
– not considered FSM

• State is only by counter value

• Input and counter value decides output

– No real state storage

– More than just counting

• Complex decision tree

– Suitable for data path diagram

– ASMD for the sake of instruction

dec_count

clk

reset

up

decade

load

data

count

enable hi

lo

Datapath and ASMD

• What type of conditional

statement is most suited?

– Count conditions and outputs..

36

counter

reset

count 0x00

enable

no defaults
no reset state input
all output conditions

T

F

F

load

T

decade

count data

T F

up up

count count+1
(dec)

count count+1
(bin)

count count-1
(bin)

count count-1
(dec)

T F

T

TF

F

count output

0x00

D

CLK

Q

+1 bin

+1 dec

-1 dec

-1 bin

dec, up
data

load enable reset

count

Decade counter :

hi/ lo signals

• Various level of detail

– Do we need unwrap all

details?

37

D

CLK

Q

D

CLK

Q
hi

lo

next_count

dec

=0x99

=0x00

=0xFF

>0x99

CL

D

CLK

Q

D

CLK

Q
hi

lo

next_count

dec

=0x99

=0x00

=0xFF

>0x99

«state»

decade

next_count
 = 0xFF

next_count
 > 0x98

next_count
 > 0x99

lo '1'

default:
low '0'
high '0'

lo '1'

hi '1' hi '1'

F

T

T

F

F

next_count
 = 0x00

next_count
 = 0x00

lo '1'

F

F

T

TT

T

FT

Decade counter example:

entity + constants and register

storage

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

entity dec_count is

generic(

COUNT_WIDTH : natural := 8);

port(

clk, reset, enable, load, decade, up : in std_logic;

data : in std_logic_vector(COUNT_WIDTH-1 downto 0);

hi, lo : out std_logic;

count : out std_logic_vector(COUNT_WIDTH-1 downto 0)

);

end entity dec_count;

architecture RTL of dec_count is

constant DEC_MAX : unsigned(3 downto 0) := "1001";

constant ZERO_NIBBLE : unsigned(3 downto 0) := "0000";

constant NIBBLES : integer := COUNT_WIDTH/4;

signal next_count : unsigned(count'range);

signal next_hi, next_lo : std_logic;

alias upper : unsigned(3 downto 0) is next_count(next_count'high downto next_count'high - 3);

alias lower : unsigned(3 downto 0) is next_count(3 downto 0);

begin

-- registry update

count <= std_logic_vector(next_count) when rising_edge(clk);

hi <= std_logic(next_hi) when rising_edge(clk);

lo <= std_logic(next_lo) when rising_edge(clk);

-- non generic part -- -- can also be processed in a loop --
next_hi <= '1' when (and next_count = '1') or ((decade = '1') and ((lower>8) and (upper >8))) else '0';
next_lo <= '1' when (nor next_count = '1') or ((decade = '1') and ((lower>9) or (upper >9))) else '0';

38

dec_count

clk

reset

up

decade

load

data

count

enable hi

lo

• Reset not part of register storage when synchronous.

• When checking multiple arguments
– => break down to boolean clauses with >, <, = or /=

decade count high low

X 0x00 0 1

0 0x01-0xFE 0 0

0 0xFF 1 0

1 0x01-0x98 0 0

1 0x99 1 0

1 0xA0-0xFF 1 1

«state»

decade

next_count
 = 0xFF

next_count
 > 0x98

next_count
 > 0x99

lo '1'

default:
low '0'
high '0'

lo '1'

hi '1' hi '1'

F

T

T

F

F

next_count
 = 0x00

next_count
 = 0x00

lo '1'

F

F

T

TT

T

FT

• Do we need both?

39

COUNTING: process(all) is

function count_dec(up: std_logic; dec : unsigned(count'range)) return unsigned is

variable i_count : unsigned(count'range);

variable acc : integer;

variable criteria, nibble : unsigned(3 downto 0);

begin

acc := 1 when up else -1;

criteria := DEC_MAX when up else ZERO_NIBBLE;

nibble := ZERO_NIBBLE when up else DEC_MAX;

i_count := dec; -- by default use the old value.

for i in 0 to NIBBLES-1 loop

if dec(i*4+3 downto i*4) = criteria then

i_count(i*4+3 downto i*4) := nibble;

next;

else

i_count(i*4+3 downto i*4) := dec(i*4+3 downto i*4) + acc;

exit;

end if;

end loop;

return i_count;

end function;

begin

next_count <=

(others => '0') when reset else

unsigned(count) when not enable else

unsigned(data) when load else

count_dec(up, unsigned(count)) when decade else

unsigned(count) + 1 when up else

unsigned(count) - 1;

end process;

end architecture RTL;

• Decision tree: one output, several conditions => when else

• There are many ways of performing decade counting
– Indexing requirements = obstacle when reading.

– Use mod or rem will be OK but still 4 bit nibble

counter

reset

count 0x00

enable

no defaults
no reset state input
all output conditions

T

F

F

load

T

decade

count data

T F

up up

count count+1
(dec)

count count+1
(bin)

count count-1
(bin)

count count-1
(dec)

T F

T

TF

F

count output Note: SW-like trick to create priority.. (Works in synthesis)

Before going into function details:

ASM style decision tree is normally easy to implement

Here: up/down used as parameter in function

Suggested reading

• Diagrams

– These and earlier lecture notes.

• Reset circuits

– Steve Kilts: Advanced FPGA Design: Architecture, Implementation

and Optimization, 2007, chapter 10.

• download from university library

Semesterside for IN3160->“Pensum/litteratur i Leganto”

40

