| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

IN3160 IN4160

Diagrams, Reset circuits, ASMD/ desing example
Yngve Hafting

UiO ¢ Department of Informatics
University of Oslo

In this course you will learn about the design
of advanced digital systems. This includes
programmable logic circuits, a hardware design
language and system-on-chip design
(processor, memory and logic on a chip). Lab
assignments provide practical experience in
how real design can be made.

After completion of the course you will:

« understand important principles for
design and testing of digital systems

« understand the relationship between
behaviour and different construction criteria

 be ableto describe advanced digital
systems at different levels of detail

* be able to perform simulation and
synthesis of digital systems.

Course Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

Goals for this lesson:

 Be able to read, use and create -diagrams

Timing-/ waveform-
Datapath-

Block-

State-

ASM-,

ASMD

« Know the purpose of reset circuits

Why do we reset at all?
What are potential pitfalls for reset handling?

* Practice in reading code

Design considerations

Next lesson: Microcoded FSMs

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Wave diagrams

« When do we read clocked signals?
* When does assignment occur?

« Does phase matter?

UiO ¢ Department of Informatics

University of Oslo BaS|C Wave dlagram |ayOUt

Undefined values are usually hatch-patterned

Single bit signals
— Are usually displayed as high (‘1’) or low (‘0’)
— Defined signals of arbitrary values are usually

shown as an area without hatching
» Can be named (here a, b)

Multi-bit is usually shown as an area
— Values or names are often used
— Multi-bit vector vs single-bit signal

Sometimes you must use context to understand which is which.

Edges
— Both vertical and slanted edges mean the same.
Hand drawing mostly vertical...
— Normally sequential logic relate to the rising_edge
— RTL-simulation of sequential logic:

Signals are read when edge occurs
Signals are assigned immediately after the edge

G N) A o

it

2| defined 7770 [\

[\

single-h

arbitrary % a W//A

[X o [¥

bit

(mutti-bit 77777(0x0A)0xFO)

mult

)(dE})(apples)(oranges }{V/

pligipinipipinininginh

Al

vertical

slanted ///'i f \
Z

-

vertical

falling_edge rising_edge

slanted % ,’
Z

output

input

UiO ¢ Department of Informatics
University of Oslo

Basic wave diagram layout

« Combinational logic (CL) responds immediately when input changes

clk | S R s O S e s
X - /ﬂ Je q i [
y 27
p<=xandy 7\ [\ / \ / \%.
q == x and y when rising_edge(clk) //,; f \ f \ ;’
| F<=x and y when falling_edge(clk) //,1 i h ;’

« Sequential logic (clocked circuits)
— responds to the input status present when the clock edge occurs.

— output is changed immediately after the clock edge occurs.
* Unless specific timing information is given

UiO ¢ Department of Informatics
University of Oslo

Waveform combinational

« Combinational response is immediate in a waveform.
— Timing diagrams will show gate delays
— Clock does not matter

= I s I s I e I s I s S e
x i g " ¥
y 2775
p==xandy /i 2 ,: 4] JEu'
g == x and y when rising_edge(clk) /A

r == x and y when falling_edge(clk) /A { \

input

output

UiO ¢ Department of Informatics
University of Oslo

Sequential logic, rising_edge

clk | N O O A R O B S
x 7 N /
y 7274 / \ / 7
p<=xandy A Pl b= P ~ g
q == x and y when rising_edge(clk) ﬁﬂ; z \‘f T T 3 ! \‘Fr ‘
| r=<=x and y when falling_edge(clk) % / \ /(

— Look at what the input status was when the clock edge occurs.

* Here: The b-c pulse activates g for one whole clock cycle

— even though (a and b) is high for a shorter duration
* Only what is present when the clock edge occurs matters

UiO ¢ Department of Informatics
University of Oslo

Sequential logic, falling _edge

e | L L L LI LI
E‘ x %)\ T\ [\
= Y 2 /

p<=xandy 773 P :
g == x and y when rising_edge(clk)

output

| r==xandy when falling_edge(clk) 1 %ﬁ 3 /—\LT/

» Here: The b-c pulse is too short to activate r
— (a and b) is low on the next falling edge

UiO ¢ Department of Informatics
University of Oslo

Timing diagrams

« = Waveforms with timing information for a specified circuit.

— Typically found in a data sheets
* Printed circuit boards (PCBSs),
« components (chips)
« communication protocol standards
— Can be generated when doing post-synthesis simulation.

— Useful...
* .. when considering setup and hold timing requirements in a system
— selecting circuits for a PCB (Printed Circuit Board)
.. when optimizing data-flow circuitry..
— High performance ASIC design

« So far today: no timing information given (only RTL sim)

10

. . 1L
UiO ¢ Department of Informatics I | I <
. . DvVDD AVDD VCP_LSD CPZH |CPZL |CP1H |CPiIL
University of Oslo [
G| e || ke 1 o

Block diagrams

 Shows how modules are
connected or communicate

——

— Level of detail may vary

— May include
« digital and analog components

« Suited for system level overview
— Or partial overview

Phase A Pre-Driver

|
It & A
L
a5,

Digtal
Inputs.

and
Outputs

I
g
7| &
It & A,
gl
[F1
|

tn
[l
7
g
7
®
7. |2
HF—-_
\
‘_.b—bg
=]

- VREG
— May be used for connection T
self test system =
sPI
self test unit —
N d seg7ctrl 'Ei‘rsn;l Voltage
econ
. 0 c
tick do do
generator cz‘gtircc’l //4 ?L
YREG AVDD -
ROM @ dy ab/cdefg In VREG AVOD = |
/4 /7 g 4 ifier
Ul .
e Fewer®l T DRV8305 Functional Block Diagram
Oblig 6 diagram =

UiO ¢ Department of Informatics Fash (@8Plke—1—> aspi

. . ceee PMOD
University of Oslo ; . Pmods
Prmod Select>

Block diagrams o

O e GPIO (8 LED:
w-;:r:iun Server servie | | oo gy ‘ Wind2 POSIX osr : ero 21 ‘ EB g slide(switoh:s,
‘ SD = gg 5 pushbuttons)
Integral subsystems Environment subsystems B
/—>- HdPhn Out
. User mode USB ; 4—;—»2 USBUART 8 AL Line Out
Many variants UART 12S/ACD e
y e Ecutive Senices 1LED, = 3 e Lok
2 butons [+ PS-6710 T "I men
- .

— Entire- or parts of systems
- letu’ l: @ LYDp;IAou‘

— HW block diagrams tend to iifiie l,;_, boR VoA« bitolon)
be more detailed than those Nt ae

used for other purposes o OLED «~—» 126x320LED | Display
(SW, business, ...) Rosot a;_':_’ ST poNE——{@] DONE LED
Kernel mode . ﬁ_'_’ e e 1 s
. . GPIO/VP/VN 4—?—&%& XADC
Usually the first diagrams oo o o
drawn in a design process o A
_ Several may be added and https://commons.wikimedia.org/wiki/File:Windows_2000_architecture.png ZYNQ XC72020-CSG484
edited later ZedBoard Block Diagram
. & M Zedboard Users guide
Almost always present in A ’
design documentation. ° 158
> Connector
12

USB-UART Bridge Interface

UiO ¢ Department of Informatics Pase 1““ ALUGorro!
|

. . N f 1

University of Oslo = ral[N WES __ WE
A RD ALUResult ReadData

Instruction AP

— A2 RD2
Memory MData
15:12 . emory
A3 Register WD
. 4 wD3 File
PCPlus8,
Datapath Diagrams Jecmc
Extend ExtImm

* A specialised block diagram that show how data <« Usually direction of travel is from left to right

moves within a system or module. « Modules, such as FSMs will contain registers,
* Should normally contain however these registers are considered control,
— How data travels between modules or functional units and not a part of the datapath.
— Regqisters (flipflops) used for storing data (not FSM - — le. A processor may have many states but data still
registers) moves through the pipeline one stage at a time.
— Bit widths for each path — (Thus we have non datapath modules using clk.)
CLK CLK CLK
Gt CLK |
% % Al WES RD1 I WE
A RD — ALUResuUItE
Instruction A RD
Memory "2 RD2 ™ Data
)) Memory
A3 Register Wiite DataE WD
4_EEICPIUSB — wWD3 File
PCPIus4F l|:| RIS ALUOUtM
B _D 1512 WAD [WASE
230 |)Extemd/_ ExtimmE
|| N ||

UiO ¢ Department of Informatics Output

") | Input synchronizer
University of Oslo synchronizer >

Output D Q=
> CLK cL
D
> CLK
> CLK

« Often used to describe parts of an architecture

 RTL logic can be represented using datapath diagrams

— It is not necessarily the best representation...
* FSMs are better described using ASM diagrams...
« Counters..
* LFSR..

Datapath diagrams

« Drawing a datapath diagram will in some cases be a very
efficient way to gain understanding..
— => Pipelining
« Example: Exam 2021, Assignment 6 (next page)-

14

UiO ¢ Department of Informatics library ieee;

use ieee.std logic_1164.all;

University of Oslo) -
use ieee.numeric_std.all;

Example: Exam 2021 entity pipelined ic
. . . . por‘t (
Assignment 6, «Pipelining» Ik : in std_logic;
rst : in std_logic;
« The pipelined module entity is described above. E P on S::_iOg:}C_VEC:O'“E jownto ;s
. . . : in std_logic_vector ownto ;
 Inthis assignment a module which calculates result = a+b+c shall ¢ : in std logic_vector(7 downto ©);
be implemented. result : out std_logic_vector(9 downto 0);
.. start : in std_logic;
« In order to meet timing closure at the required frequency, pipelining result valid : out std logic
shall be used.)3
« All input are synchronized to the clock signal clk. end entity pipelined;

Reset can be either synchronous or asynchronous.

The implementation shall be synchronous to the clock signal clk. . We read this as the control signal

All output should be driven by registers to avoid propagating shall be pipelined along with the data
hazards. — Itis not necessary to block computation
The computation shall use unsigned arithmetic operation on the when there is no start signal.

operands a, b and c. * NOTE: It does not make sense to
When the start signal is high the computation shall start, and the pipeline unless &, b, ¢ and the control
result_valid signal shall be high when valid data is present on the signal follows each other.

result signal. — le: expect new data each clock cycle

« Make your own datapath diagram for

. N
Implement the architecture for the pipelined module. this task (2 min)! 15

UiO ¢ Department of Informatics

architecture

D e L T .
! |
. . ! | | . |
University of Oslo start i r_start result_valid :
L] [] L] 1
Ex2021-pipelinin 2 i
i :
! 1
! 1
b K |
:]
1
 VHDL code may come 1 ;
In many flavours: L |
architecture RTL of pipelined is architecture RAW of pipelined is
begin signal r_c : unsigned(7 downto 0);
pipeline: process(rst, clk) is signal r_ab : unsigned(8 downto ©);
variable r_start : std_logic; signal r_start : std_logic;
variable r_c : unsigned(7 downto 0); begin
variable r_ab : unsigned(8 downto 0); r_start <= when rst else start when rising_edge(clk);
begin - result_valid <= when rst else r_start when rising_edge(clk);
if rst then r_ab <=(others => '0') when rst else ("0" & unsigned(a) + "0" & unsigned(b)) when rising_edge(clk);
r start := '0'; r_c <= (others => '0') when rst else (unsigned(c)) when rising_edge(clk);
r e := (others => '9'); result <= (others => '0') when rst else std_logic_vector("00" & r_c + "0" & r_ab) when rising_edge(clk);
r_ab := (others => '0'); end architecture RAW;
result <= (others => '0');
result_valid <= '0';
elsif rising_edge(clk) then . . .
-- Note: Variables must be used _before_ being « Getting to this code should be doable when having
-- assigned to form registers... .
result <= std_logic_vector("00" & r_c + "0" & r_ab); tf]ea (j|Ea€JrgarT]___
result_valid <= r_start;
r_start := start; H .
p— B ()
r_ab := ("0" & unsigned(a) + "0" & unsigned(b)); Common mIStakeS
r_c := unsigned(c);
end if; — Forgetting to put c in pipeline before calculating step 2.
end process; . . .
end architecture RTL; — Believing start shall be valid for 3 clock cycles...

— Attempting SW-style loops(!).. 16

« Think of VHDL as a circuit description language...

UiO ¢ Department of Informatics Input
University of Oslo

Combinational

FSMs and their diagrams

« Datapath shows

Input' synciﬁlt'ngzer E-“S1 ----- A "““““E

— Moore vs Mealy machine i }& T+ 4T
. P > clk | i

— Synchronizers = |

« State- and ASM diagrams
— Shows state transitions
 conditions (and priority)
— Output
— Register operations (ASMD)

UiO ¢ Department of Informatics
University of Oslo

State diagram

» States
* Transitions between states

« Beside transition arc:
— Descision parameter
— [Mealy output

 Inside bubble:
— Moore output

* Frequently used, but not always with all
parameters.

* Note: Default values often omitted
— Here: default: x, y = 0 (boolean false)

18

UiO ¢ Department of Informatics
University of Oslo

ASM (Algorithmic State Machine) block

The state box represents a state in the FSM,

— State based output is shown inside
(i.e. the Moore outputs).

The decision box tests an input condition to
determine the exit path of the current ASM
block. T~

A conditional output box (“Mealy box”
— lists conditionally asserted signals.
— Can only be placed after an exit path of a decision box
— (i.e. the Mealy outputs that depends on the state and

input values).

/—— state entry
state box
state
name ‘/
Moore
output
decision box
\ . /
Boolean
s F—
@ | conditional
\\ A 4 output box
Mealy output)

v I__ exit to other ASM % /_

block

exit to other ASM
block

19

UiO ¢ Department of Informatics
University of Oslo

«Datapath» FSM

« Datapath is described by a
function rather than a table
— Counters
— Mathematical operations
— Shift registers
— Etc.

* We usually divide into
control FSM and Datapath

control input

data

Control FSM

control output

StatUST

lcommand

Datapath

((\/*

input

fl

f2

"~

registers
rl, r2,..

D

data

output

> CLK

20

UiO ¢ Department of Informatics
University of Oslo

«Register operations» in data-path FSM (FSMD)
-and how to deal with it

« Common notations for register operations:

— on clock edge we increment rl rM—r1+1
— on clock edge we update r1 based on a function of register outputs —— r1 « f(r1,r2)
— on clock edge, set rl to r2+r3 * 1l —1r2+1r3

This notation can be confusing, as it implies FsM AT _\ @J
one clock delay if it is put into an ASM chart.) HLESE N =

SOlUtlon > Output
Use ‘<’ for datapath only (not for FSM) ﬁ b q o)

Know that ‘" implies the use of registers that
are not a part of the state machine

> CIK

f(r1,r2)

! next_r2 r2
- — D Q

next_r3 r3
D

UiO ¢ Department of Informatics
University of Oslo

Other drawings or schematics

accept_coin
(el.mag. actuator)

« System sketches, drawings
— Usually used to display a concept or an idea
— Can be anything (vague block diagram..?)

/LLL: coin_sens

Coin type

 Circuit diagrams EEE
— Show how the current flows in a circuit

— Netlists can be made from VHDL EEE Control system
* (and then turned into circuit diagrams)

dispenser dispenser

| = o0

22

| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

IN3160

Reset circuits
Synchronous or Asynchronous reset?

Source: Steve Kilts: Advanced FPGA Design. 2007

IN3160
UiO ¢ Department of Informatics
University of Oslo

Outline

Combinational logic and floating pins
Why reset?

Asynchronous reset

Synchronous reset

Reset circuits

24

UiO ¢ Department of Informatics
University of Oslo

Combinational logic and I/O pins

— No values are stored in CL
— Setting the input will give the desired output

.

FPGA

* No need for reset circuitry for CL g

 However... avoid floating gates

PCB

— Floating gates may cause power surges and noise

— All input pins should be driven
« Potentially unconnected inputs should be pulled high or low
— Pull-up or pull-down on PCB or

— FPGAs may have internal pull up/down circuitry for |O-pins.

» Can be a life saver... (Product/ project / etc).
25

UiO ¢ Department of Informatics
University of Oslo

Why reset?

» Avoid unpredictable behavior during startup
— Metastability creating unpredictable results
* Both in our system and surrounding systems

— Random register values may lead to undesired or illegal states
» Lockup — states with no exit
» undesired output can have unpleasant consequenses

* To get out of illegal states
— Unpredicted behaviour may lead to illegal states

— Noise
* Crosstalk / EMP
» Radiation - both thermal and radioactive
* Floating gates

« ... To ensure verifiable predictability ...

26

UiO ¢ Department of Informatics
University of Oslo

Synchronous reset

« Externally activated resets are per definition
asynchronous
— Synchronization is needed.

« Synchronous reset ‘and flip-flop input
— Added logic can add to critical path
— FPGA primitives may have this option built in.

* Reset pulses coming from faster clock
domains may be missed entirely.

next g <= '0' when reset else d;
g <= next g when rising edge(clk);

reset —d
g D Q— q

clk >

too short rese

clk

TsetupHHThold

! !
! |
! |
! : . : 1
! : : : |
! T : : !
! : : : !
! : : : !
! : : : I
] : : : |
! : : : : : : |
] : : : : : : |
1 d : : : : : : |
] : : : : : : |
] : : : : : :]
] : : : : : :]
] : : : : : :]
] : : : T T T]
! : : : : : :]
g P / i 1 Never reset !
! " " J : . . |

e e e e e e e e o ke o o k= = = - ——————————

UiO ¢ Department of Informatics
University of Oslo

AsynChronous reset g <= '0' when reset else d when rising edge(clk);

« Asynchronous assertion will always trigger b
clk —
— Reset duration must be longer than setup+hold... res

reset

reset deassertion issue

« Asynchronous deassertion may cause |
metastability § -/ A\
— Deassertion during setup/hold period

28

UiO ¢ Department of Informatics

University of Oslo system flip-flops

1 1 E reset synchronizer T T T
Reset circuit(s) e L
— Asynchronous assertion, L o a0
Synchronous deassertion |
« Short reset pulses will trigger ecera_| | |
. 2FF mitigates metastability E @
— More in clock domain crossing lecture... '
ffl <= '0' when ext reset else 'l' when rising edge(clk);
ff2 <= '0' when ext reset else ffl when rising edge(clk);
— Pitfalls? reset SE O I . .
« Hazards => random reset | ext reset / \

* This circuit should not be used CoCooIIITooIIIIoIIIIIoIIIIIoIIIIIToTIIIooTIIIooooIIooooIIooo!
unless external reset is hazard-free.

— Multiple sources for reset? fi \—/
\
i /

» Ensure resetpulses are long enough

» Use Synchronous reset
— 2FF when crossing domains

UiO ¢ Department of Informatics
University of Oslo

Resets in IN3160

« All designs should start in a known state
— Predefined values for all registers, no metastability.

— Well implemented reset functionality ensures this.
« Can be invoked both at start and later

« The FPGAs we use are RAM based and

— will always start in a predictable configuration
— => We can start without using reset
+ Default state is ‘0’ (the FPGA’s we use)
* Not using reset at start is an exception
— Reset functionality should always be implemented
— There is no guarantee for (other) designs to be safe without implicit initialization
— If we do not have a predefined source for reset signals, use one button...

30

UiO ¢ Department of Informatics
University of Oslo

Reset summary

« External reset is asynchronous
— Should be synchronized to avoid causing metastability.

 Itis OK to use asynchronous reset once synchronized...

— Once synchronized, synchronous reset is perfect...
« Some FPGA primitives prefer synch reset only.

« Reset pulse must be long enough for reset circuitry
(depends on technology / logic family, not clk frequency..)

31

| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

Non-FSM example with ASMD diagram
(Theory covered earlier)

UiO ¢ Department of Informatics

University of Oslo

Example: Decade counter

architecture doulos model solution of dec count is

entity dec_count is

port (
Clock,
Reset,
Enable,
Load,
Mode : in Std _logic;
Data : in Std logic_vector (7 downto 0);
Count : out Std logic_vector (7 downto 0));
end;
Enable Load Next Count
0 0 Data
0 1 Count+1
(bin)
0 1 Count+1
(dec)
1 X Count

constant nibble max
constant decade_max

: Unsigned (3 downto
: Unsigned (3 downto

(
constant zero nibble : Unsigned(3 downto
constant zero byte : Unsigned (7 downto
signal Q : Unsigned (7 downto

begin
process (Clock, Reset)
begin
if Reset = '0' then

Q <= zero byte;

elsif RISING EDGE (Clock) then
if Enable = '0' then
if Load = '0' then
Q <= Unsigned (Data) ;
elsif (Mode = '0' and Q(3 downto 0)
(Mode = "1' and Q(3 downto 0)
Q(3 downto 0) <= Q(3 downto 0) +
else
Q (3 downto 0) <= zero nibble;
if (Mode = '0' and Q(7 downto 4)
(Mode = '1' and Q(7 downto 4)
Q(7 downto 4) <= Q(7 downto 4)
else
Q(7 downto 4) <= zero nibble;
end if;
end if;
end if;
end if;

end process;
count <= Std_logic_vector (Q);
end;

0) := "1111";

0) := "1001";

0) := "0000";

0) := "00000000";
0);

7

/= nibble max) or
/= decade max) then
1;

/= nibble max) or
/= decade max) then
+ 1;

Critique design
* Readability

* Uses negative logic

* «Mode» requires explanation
* Portability

* Asynchronous reset

Critique implementation

* Readability
* Mix of CL and register storage
* If-based...

* CL style assignment in
clocked process
* Maintainability
* Not scaleable
* Duplicate code
* For each nibble

UiO ¢ Department of Informatics
University of Oslo

Decade counter

* A new slightly different design: * New implementation
— Synchronous reset — Separate CL and register assignment
— High and low indicators
— Hazard free output o But first:
 all output in registers — Diagrams & tables
— Positive logic . Entity
* enable « ASMD
* load — Algorithmic state machine with data path

* decade (nbinary)
* up (ndown)

— Generic ?
» Will be bound by 4bit nibble size

34

UiO ¢ Department of Informatics
University of Oslo

8 bit decade counter

load, up/down, dec/bin

e Counter

— not considered FSM
State is only by counter value
Input and counter value decides output
— No real state storage

— More than just counting
+ Complex decision tree
— Suitable for data path diagram
— ASMD for the sake of instruction

count

0x00

0x01-0xFE

OxFF

0x01-0x98

0x99

clk
reset — Indicates function
—enable/ hi .]
220 | gec count o+ High/low signal
_decade] |_count
up |
=daia
enable load decade up next_count decade
0 X X X count X
1 1 X X data 0
1 0 0 1 count+1 (bin) 0
1
1 0 0 0 count-1 (bin)
1
1 0 1 1 count+1 (dec)
1 0 1 0 count-1 (dec) 1

0xAO-OxFF ¥

UiO ¢ Department of Informatics
University of Oslo

no defaults
no reset stateinput
all output conditions

——

Datapath and ASMD

load enable reset
data ’\k
d
ec, up 0x00
I count
D
{:3 > ClK

« What type of conditional
statement is most suited?

— Count conditions and outputs..

A

count<-count+1 count<-count-1
(dec) (dec)

count<count-1
(bin)

count<-count+1
(bin)

UiO ¢ Department of Informatics
University of Oslo

Decade counter :
hi/ lo signals

« Various level of detall

— Do we need unwrap all
details?

dec

=0x00 —T

=OXFF —

next_count

>0x99 —T—

=0x99

default:
low <« '@’
high « '0'

A 4

T next_count
= 0x00

«state»

A 4

next_count
> 0x98

T
lo « '1'
h 4

A 4

next_count
= 0x00

F

A

T next_count F o
> 0x99 ” ”
T
dec
=0x00
lo
D lo
D
CLK =0xFF
> > CLK
next_count CL
D hi >0x99 hi
D
> CLK > CLK
=0x99
37

UiO ¢ Department of Informatics

University of Oslo Decade counter example:

library IEEE;

entity + constants and register

use IEEE.numeric_std.all;

decade count
entity dec_count is S t O rag e
generic(u ey
COUNT_WIDTH : natural := 8); clk 0 0x01-0xFE
port(reset 0 OXFF
clk, reset, enable, load, decade, up : in std_logic; bl h
enable
data : in std_logic_vector(COUNT_WIDTH-1 downto 9); I 1 0x01-0x98
hi. 1 . .. oad lo
i, lo : out std_logic; dec_count 1 0x99
count : out std_logic_vector(COUNT_WIDTH-1 downto ©) _decade] _count,
) 0 1 0xAO-OxFF
end entity dec_count;
- da:a ________ - I- - -
default: «staten E
low « '@'
architecture RTL of dec_count is high « e’
constant DEC_MAX : unsigned(3 downto 0) := "1001"; :
constant ZERO_NIBBLE : unsigned(3 downto @) := "0000"; T
* Do we need both? doase

constant NIBBLES : integer := COUNT_WIDTH/4;

signal next_count : unsigned(count'range); 1
signal next_hi, next_lo : std_logic;

next_count
>0x98

alias upper : unsigned(3 downto @) is next_count(next_count'high downto next_count'high - 3);
alias lower : unsigned(3 downto @) is next_count(3 downto 9);

next_count F
>0x99

begin
-- registry update

count <= std_logic_vector(next_count) when rising edge(clk); o Reset not part of register storage when synchronous.
hi <= std_logic(next_hi) when rising_edge(clk);

lo <= std_logic(next_lo) when rising_edge(clk); ¢ When checking mUItiple arguments
— =>break down to boolean clauses with >, <, = or /=

-- non generic part -- -- can also be processed in a loop --
next_hi <= '1' when (and next_count = '1') or ((decade = '1') and ((lower>8) and (upper >8))) else '0'; 38
next_lo <= '1"' when (nor next_count = '1') or ((decade = '1') and ((lower>2) or (upper >9))) else '0';

UiO ¢ Department of Informatics
University of Oslo

no defaults
no reset state input
all output conditions

counter

count<-0x00
count<¢-output

A 4

A 4

up

F

A 4
counté-count+1 count<-count-1
(dec) (dec)

& &
< <

count<-count-1
(bin)

count<-count+1
(bin)

+ Decision tree: one output, several conditions => when else

* There are many ways of performing decade counting
— Indexing requirements = obstacle when reading.
— Use mod or rem will be OK but still 4 bit nibble

COUNTING: process(all) is
function count_dec(up: std_logic; dec : unsigned(count'range)) return unsigned
variable i_count : unsigned(count'range);

variable acc : integer;
variable criteria, nibble : unsigned(3 downto 0);
begin

acc := when up else -1;
criteria := DEC_MAX when up else ZERO_NIBBLE;
nibble := ZERO_NIBBLE when up else DEC_MAX;
i_count := dec; -- by default use the old value.
for i in © to NIBBLES-1 loop

if dec(i*4+3 downto i*4) = criteria then

i_count(i*4+3 downto i*4) :=
next;
else
i_count
exit;
end if;
end loop;
return i_count;
end function;
begin
next_count <=

nibble;

*4+3 downto i*4) := dec(i*4+3 downto i*4) + acc;

Before going into function details:

Here: up/down used as parameter in function

(others => '0") when reset else
unsigned(count) when not enable else
unsigned(data) when load else
count_dec(up, unsigned(count)) when decade else
unsigned(count) + when up else

unsigned(count) - 1;
end process;

end architecture RTL;

39

is

Note: SW-like trick to create priority.. (Works in synthesis)

ASM style decision tree is normally easy to implement

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

« Diagrams
— These and earlier lecture notes.

* Reset circuits
— Steve Kilts: Advanced FPGA Design: Architecture, Implementation
and Optimization, 2007, chapter 10.

« download from university library
Semesterside for IN3160->“Pensum/litteratur i Leganto”

40

