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In this course you will learn about the design of
advanced digital systems. This includes
programmable logic circuits, a hardware design
language and system-on-chip design (processor,
memory and logic on a chip). Lab assignments
provide practical experience in how real design can
be made.

After completion of the course you will:

* understand important principles for design and
testing of digital systems

« understand the relationship between behaviour
and different construction criteria

* Dbe able to describe advanced digital systems at
different levels of detail

* be able to perform simulation and synthesis of
digital systems.

28.04.2022

Goals for this lesson:

« Know terms and structure

* Interconnect types
* buses
» crossbar switches
* interconnect networks

« Know typical structures for memory
address decoding
* Bit slicing
* Banking
* Tiling


https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
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Overview

* Interconnect

* bus

e crossbar

* network
« Memory

« SRAM

« DRAM

« Memory organization
« Banking
» Slicing
« Tiling

28.04.2022
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Interconnect
Interconnect
Client O Client 1 eee [(Clientn-1

« Many clients need to communicate
« Ad-hoc point-to-point wiring or shared interconnect
 Like a telephone exchange

(c) 2005-2012 W. J. Dally
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Bus

« interconnect with (multiple)
clients connected to one (often
multiple bit) data line.

« Only one client can send data
at a time, but there can be
multiple receivers.

 The bus arbiter selects which

client is allowed to use the bus.

 External buses:
— tristate

* Internal buses
— or'ing of client signals

bus :

Y \
Bus Bus
Interface Interface
Client O Client 1

Bus
Arbiter

‘u Il

y

Bus
Interface

Client n-1
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VHbDL for a simple bus interface

° -- Combinational Bus Interface
N > -- t (transmit) and r (receive) in signal names are from the
,8 > -- perspective of the bus
N} Bus . .
o " library ieee;
N ¢ |Arbiter i i
< * use ieee.std_logic_1164.all;
« v Yy |v v _|v . .
o entity BusInt is
é% Bus Bus Bus generic( aw: integer := 2; -- address width
Interface Interface Interface dw: integer := 4 ); -- data width
Y Y A port( cr_valid, arb_grant, bt_valid: in std_logic;
cr_ready, ct_valid, arb_req, br_valid: out std_logic;
cr_addr, bt_addr, my_addr: in std_logic_vector(aw-1 downto 9);
br_addr: out std_logic_vector(aw-1 downto ©0);
Client 0 Client 1 eee |Client n-1 cr_data, bt_data: in std_loglf_vector‘(dw- downto ©9);
br_data, ct_data: out std_logic_vector(dw-1 downto ©) );
end BusInt;
BUS
architecture impl of BusInt is
Arbiter —begin
: -- arbitration
: arb_req <= cr_valid;
| Harb_grant arb_req cr_ready <= arb_grant;
L = my_addr
bt_valid br_valid — -- bus drive
- br_addr — A
bt_addr br data br_valid <= arb_grant;
bt_data br_addr <= cr_addr when arb_grant else (others => '0');
cr_valid cr_ready br_data <= cr_data when arb_grant else (others => '0');
cr_addr ct_valid
cr_data ct_data R
[ ] -- bus receive
ct_valid <= '1' when (bt_valid = '1') and (bt_addr = my_addr) else '0';
) ct_data <= bt_data ;
Client

end impl;
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Crossbhar Switch

interconnect with multiple
senders and receivers.

Several senders may be active
at a time, as long as a unique
path can be allocated to each
reciver.

Throughput can be increased
by allowing buffering at each
crosspoint..

(c) 2005-2012 W. J. Dally

Sending
Client 0

Sending
Client 1

Sending
Client m-1

Allocator

Receiving
Client 0

Receiving
Client 1

Receiving
Client n-1
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Sending

Client 0

Sending

Client 1

Sending

Client m-1

Allocator

Receiving Receiving coe Receiving
Client0 Client 1 Client n-1
entity Xbar22 is
generic( dw: integer := 4 ); -- data width

port(

cOr_valid, ceot_ready, clr_valid, clt_ready: in std_logic;
cOr_ready, cOt_valid, clr_ready, clt_valid: out std_logic;
cOr_addr, clr_addr: in std_logic;

cor_data, clr_data: in std_logic_vector(dw-

cot_data, clt_data: out std_logic_vector(dw-
end Xbar22;

downto 9);
downto

) )

Crossbar Switch 2x2 example

architecture impl of Xbar22 is

signal reqe@, reqol, reqld, reqll: std logic;

signal grant@o, grant@l, grantl@, grantll: std_logic;
begin

-- request matrix

reqe® <= '1' when not c@r_addr and cOr_valid else '0°;
reqol <= '1' when cOr_addr and cOr_valid else '0';
reqle <= '1' when not clr_addr and clr_valid else '0°;
reqll <= '1' when clr_addr and clr_valid else '0';

-- arbitration © wins

grantoo <= reqoo;

grant@l <= reqol;

grantle <= reql® and not reqeo ;
grantll <= reqll and not req@l ;

-- connections

cot_valid <= (grante@e and cor_valid) or (grantl® and clr_valid);

cot_data <= (cOr_data and (dw-1 downto 9 => grant@@)) or
(clr_data and (dw-1 downto © => grantle));

clt_valid <= (grant@l and c@r_valid) or (grantll and clr_valid);

clt_data <= (cOr_data and (dw-1 downto © => grantel)) or
(clr_data and (dw-1 downto © => grantll));

-- ready

cOr_ready <= (grant@@ and coOt_ready) or (grant@l and clt_ready);

clr_ready <= (grantle and co@t_ready) or (grantll and clt_ready);
end impl;
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Interconnection Networks

multiple senders and receivers.

Packets are buffered by routers
that transfer the packet in the
direction of the recipient.

Routing algorithm will be
depending on the network
topology.

— star/tree topology (LAN)

— ring topology

— mesh topology

(c) 2005-2012 W. J. Dally

Client 12| |Client 13 Client 14 (Client 15 Client 16 |Client 17
A A A
Router02 |« cx02 »| Routerl2 [« cx12 »| Router22
A A A
(9] (9] (9]
Client 6 Client7| [& Client 8 Client9| [ Client 10 |Client 11| |X
= - =
A A A
Y Y Y
Router01 |« cx01 »| Routerll [« ox11 »| Router21
A A A
(9] (9] (9]
Client 0 Client1| [S Client 2 Client3| |& Client 4 Client5| |S
o o o
A A A
Y Y Y
00 10
Router00 |« X »| Routerl0 [« X » Router20
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Interconnection Networks

Cycle (0] 1 2 3

Client O output

RouterOO

cx00e

RouterlO

cx10e
Router20
cy20n

Router21

10

11

Client 11 input

(c) 2005-2012 W. J. Dally
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Memory

: e
* Row of decoders, column multiplexers Address

« Typical restriction of array size
— 256 x 256 = 65536 = 64k hit = 8k Byte
— electrical restriction
« Larger memory need to be multiples of arrays
at the maximum size

<4+—¥» Data

Capacity
Bandwidth
Latency
Granularity

(c) 2005-2012 W. J. Dally
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SRAM

« Both asynchronous and
synchronous versions exist

« Stored bit is (weakly) upheld by
the inverters.

* When wordline is activated

— bitline either
* propagates the weak value or

« sets the bit value if it is driven
(strong)

wordline

bitline
« The physical layout can be wordline

bitline

stored
bit

bitline

more complex, including 1
transistors for precharging
bitlines etc.

28.04.2022
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DRAM Operation

For each read, the stored
capacitor charge is removed,
and thus need to be re-written
to remain stored.

Several columns in one row can
be read before rewrite.

Rewrite (D&H: precharge
operation) takes a certain time

— DRAM stores bit as charge on
capacitors.

RAM cells need periodically
refresh that performs read/write

Act <B;, Rp>

Ri

B;

0x0011223344556677

y v vy

Sense Amps

00

Dram Chip

Read <B;, C,>

B;

Ri

XXXXXXXXXXXXXXXX

0x0011223344556677 I

00

Dram Chip

B;

R;

XXXXXXXXXXXXXXXX

A A A A

0x0011223344556677 I

00

Dram Chip

(c)

Precharge <B;, Rj>
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What if you need more memory or more bandwidth than one primitive?
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Bit-Slicing

 Several slices shares the same
address

« Data is read from a row of
slices in parallel.

d13:0 14
Slice 15 Slice 14
[ X X J
(a) 16k x4 16k x 4
4 4
Ds3:60 Dsg.56 @@ @

Slice O
16k x4
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Banking

« Banked memory is organized in
columns of array banks

« Parts of the address is decoded
to enable output from the
selected bank only.

— May be used to have the other
banks idle and save power.

(b)

Decoder

Bank O
1k x 64

v

Bank 1
1k x 64

o

Bank 15
1k x 64

A;m

D63:O
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Tiling =
Bit slicing & banking

(c) 2005-2012 W. J. Dally

Decoder

Bank 30 L Bank 20
4k x 16 4k x 16

I

Bank 10 L Bank 00
4k x 16 4k x 16

| |
163 De3.08 163 D47:32

|
163 D116 16j| Dis:o

Bank 31 L Bank 21
4k x 16 4k x 16

[

Bank 11 L Bank 01
4k x 16 4k x 16

I I
16\ D63:48 16\ D47:32

T
163 D116 16j| Diso

Bank 32 L Bank 22
4k x 16 4k x 16

I

Bank 12 L Bank 02
4k x 16 4k x 16

T T
163 De3.08 163 Ds7:32

T
163 D116 16j| Dis:o

Bank 33 L Bank 23
4k x 16 4k x 16

I

Bank 13 L Bank 03
4k x 16 4k x 16

I I
16‘ D63:48 16‘ D47:32

|
163 D316 165 Dis:o
64

D63:0
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Interleaving

r N*M

Using a crossbar switch

for a tiled set of banks
{a, di, cmd}o

Allow for multiple read
or writes during the
same cycle

Ex: Quad data rate {a, di, cmd}ymg)

Allocator
N*M gnt

{a, di, cmd}yo be dopo do,o

° °

° °

° °
{a, di, cmd}pn-1 dop(m-1) dorm-1
bn-1 —

(QDR) RAM

(c) 2005-2012 W. J. Dally
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Hierarchy (->IN2060)

16GB 16GB
A [200107f£:108000] DRAM DRAM A [200000000:0]
|
1MB Array 2 L2 MRU 1MB
A [107fff:8000] ¥
32kB o L1 MRU 32kB
A [7fff:0] Y
Req
Req

(a)

(c) 2005-2012 W. J. Dally

(b)



UiO ¢ Department of Informatics
University of Oslo

Summary

« DHA
— 24-25.3, p 521-540
— (25.4 can be read to connect the dots from IN2060)

(c) 2005-2012 W. J. Dally



