‘J,. | ;'”,, ZI Fiwr v ! f ; & ‘/.

UiO ¢ Department of Informatics
University of Oslo

IN 3160, IN4160

Interconnect, Memory
Yngve Hafting

Ui0: Department of Informatics Coyrse Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

University of Oslo

In this course you will learn about the design of
advanced digital systems. This includes
programmable logic circuits, a hardware design
language and system-on-chip design (processor,
memory and logic on a chip). Lab assignments
provide practical experience in how real design can
be made.

After completion of the course you will:

* understand important principles for design and
testing of digital systems

« understand the relationship between behaviour
and different construction criteria

* Dbe able to describe advanced digital systems at
different levels of detail

* be able to perform simulation and synthesis of
digital systems.

28.04.2022

Goals for this lesson:

« Know terms and structure

* Interconnect types
* buses
» crossbar switches
* interconnect networks

« Know typical structures for memory
address decoding
* Bit slicing
* Banking
* Tiling

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Overview

* Interconnect

* bus

e crossbar

* network
« Memory

« SRAM

« DRAM

« Memory organization
« Banking
» Slicing
« Tiling

28.04.2022

UiO ¢ Department of Informatics
University of Oslo

Interconnect
Interconnect
Client O Client 1 eee [(Clientn-1

« Many clients need to communicate
« Ad-hoc point-to-point wiring or shared interconnect
 Like a telephone exchange

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

Bus

« interconnect with (multiple)
clients connected to one (often
multiple bit) data line.

« Only one client can send data
at a time, but there can be
multiple receivers.

 The bus arbiter selects which

client is allowed to use the bus.

 External buses:
— tristate

* Internal buses
— or'ing of client signals

bus :

Y \
Bus Bus
Interface Interface
Client O Client 1

Bus
Arbiter

‘u Il

y

Bus
Interface

Client n-1

UiO ¢ Department of Informatics
University of Oslo

VHbDL for a simple bus interface

° -- Combinational Bus Interface
N > -- t (transmit) and r (receive) in signal names are from the
,8 > -- perspective of the bus
N} Bus . .
o " library ieee;
N ¢ |Arbiter i i
< * use ieee.std_logic_1164.all;
« v Yy |v v _|v . .
o entity BusInt is
é% Bus Bus Bus generic(aw: integer := 2; -- address width
Interface Interface Interface dw: integer := 4); -- data width
Y Y A port(cr_valid, arb_grant, bt_valid: in std_logic;
cr_ready, ct_valid, arb_req, br_valid: out std_logic;
cr_addr, bt_addr, my_addr: in std_logic_vector(aw-1 downto 9);
br_addr: out std_logic_vector(aw-1 downto ©0);
Client 0 Client 1 eee |Client n-1 cr_data, bt_data: in std_loglf_vector‘(dw- downto ©9);
br_data, ct_data: out std_logic_vector(dw-1 downto ©));
end BusInt;
BUS
architecture impl of BusInt is
Arbiter —begin
: -- arbitration
: arb_req <= cr_valid;
| Harb_grant arb_req cr_ready <= arb_grant;
L = my_addr
bt_valid br_valid — -- bus drive
- br_addr — A
bt_addr br data br_valid <= arb_grant;
bt_data br_addr <= cr_addr when arb_grant else (others => '0');
cr_valid cr_ready br_data <= cr_data when arb_grant else (others => '0');
cr_addr ct_valid
cr_data ct_data R
[] -- bus receive
ct_valid <= '1' when (bt_valid = '1') and (bt_addr = my_addr) else '0';
) ct_data <= bt_data ;
Client

end impl;

UiO ¢ Department of Informatics
University of Oslo

Crossbhar Switch

interconnect with multiple
senders and receivers.

Several senders may be active
at a time, as long as a unique
path can be allocated to each
reciver.

Throughput can be increased
by allowing buffering at each
crosspoint..

(c) 2005-2012 W. J. Dally

Sending
Client 0

Sending
Client 1

Sending
Client m-1

Allocator

Receiving
Client 0

Receiving
Client 1

Receiving
Client n-1

UiO ¢ Department of Informatics

University of Oslo

Sending

Client 0

Sending

Client 1

Sending

Client m-1

Allocator

Receiving Receiving coe Receiving
Client0 Client 1 Client n-1
entity Xbar22 is
generic(dw: integer := 4); -- data width

port(

cOr_valid, ceot_ready, clr_valid, clt_ready: in std_logic;
cOr_ready, cOt_valid, clr_ready, clt_valid: out std_logic;
cOr_addr, clr_addr: in std_logic;

cor_data, clr_data: in std_logic_vector(dw-

cot_data, clt_data: out std_logic_vector(dw-
end Xbar22;

downto 9);
downto

))

Crossbar Switch 2x2 example

architecture impl of Xbar22 is

signal reqe@, reqol, reqld, reqll: std logic;

signal grant@o, grant@l, grantl@, grantll: std_logic;
begin

-- request matrix

reqe® <= '1' when not c@r_addr and cOr_valid else '0°;
reqol <= '1' when cOr_addr and cOr_valid else '0';
reqle <= '1' when not clr_addr and clr_valid else '0°;
reqll <= '1' when clr_addr and clr_valid else '0';

-- arbitration © wins

grantoo <= reqoo;

grant@l <= reqol;

grantle <= reql® and not reqeo ;
grantll <= reqll and not req@l ;

-- connections

cot_valid <= (grante@e and cor_valid) or (grantl® and clr_valid);

cot_data <= (cOr_data and (dw-1 downto 9 => grant@@)) or
(clr_data and (dw-1 downto © => grantle));

clt_valid <= (grant@l and c@r_valid) or (grantll and clr_valid);

clt_data <= (cOr_data and (dw-1 downto © => grantel)) or
(clr_data and (dw-1 downto © => grantll));

-- ready

cOr_ready <= (grant@@ and coOt_ready) or (grant@l and clt_ready);

clr_ready <= (grantle and co@t_ready) or (grantll and clt_ready);
end impl;

UiO ¢ Department of Informatics
University of Oslo

Interconnection Networks

multiple senders and receivers.

Packets are buffered by routers
that transfer the packet in the
direction of the recipient.

Routing algorithm will be
depending on the network
topology.

— star/tree topology (LAN)

— ring topology

— mesh topology

(c) 2005-2012 W. J. Dally

Client 12| |Client 13 Client 14 (Client 15 Client 16 |Client 17
A A A
Router02 |« cx02 »| Routerl2 [« cx12 »| Router22
A A A
(9] (9] (9]
Client 6 Client7| [& Client 8 Client9| [Client 10 |Client 11| |X
= - =
A A A
Y Y Y
Router01 |« cx01 »| Routerll [« ox11 »| Router21
A A A
(9] (9] (9]
Client 0 Client1| [S Client 2 Client3| |& Client 4 Client5| |S
o o o
A A A
Y Y Y
00 10
Router00 |« X »| Routerl0 [« X » Router20

UiO ¢ Department of Informatics
University of Oslo

Interconnection Networks

Cycle (0] 1 2 3

Client O output

RouterOO

cx00e

RouterlO

cx10e
Router20
cy20n

Router21

10

11

Client 11 input

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

Memory

: e
* Row of decoders, column multiplexers Address

« Typical restriction of array size
— 256 x 256 = 65536 = 64k hit = 8k Byte
— electrical restriction
« Larger memory need to be multiples of arrays
at the maximum size

<4+—¥» Data

Capacity
Bandwidth
Latency
Granularity

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

SRAM

« Both asynchronous and
synchronous versions exist

« Stored bit is (weakly) upheld by
the inverters.

* When wordline is activated

— bitline either
* propagates the weak value or

« sets the bit value if it is driven
(strong)

wordline

bitline
« The physical layout can be wordline

bitline

stored
bit

bitline

more complex, including 1
transistors for precharging
bitlines etc.

28.04.2022

Il

13

UiO ¢ Department of Informatics

University of Oslo

DRAM Operation

For each read, the stored
capacitor charge is removed,
and thus need to be re-written
to remain stored.

Several columns in one row can
be read before rewrite.

Rewrite (D&H: precharge
operation) takes a certain time

— DRAM stores bit as charge on
capacitors.

RAM cells need periodically
refresh that performs read/write

Act <B;, Rp>

Ri

B;

0x0011223344556677

y v vy

Sense Amps

00

Dram Chip

Read <B;, C,>

B;

Ri

XXXXXXXXXXXXXXXX

0x0011223344556677 I

00

Dram Chip

B;

R;

XXXXXXXXXXXXXXXX

A A A A

0x0011223344556677 I

00

Dram Chip

(c)

Precharge <B;, Rj>

& f -'.”,7 /I ey | ! ‘ ; g p

UiO ¢ Department of Informatics
University of Oslo

What if you need more memory or more bandwidth than one primitive?

UiO ¢ Department of Informatics
University of Oslo

Bit-Slicing

 Several slices shares the same
address

« Data is read from a row of
slices in parallel.

d13:0 14
Slice 15 Slice 14
[X X J
(a) 16k x4 16k x 4
4 4
Ds3:60 Dsg.56 @@ @

Slice O
16k x4

UiO ¢ Department of Informatics
University of Oslo

Banking

« Banked memory is organized in
columns of array banks

« Parts of the address is decoded
to enable output from the
selected bank only.

— May be used to have the other
banks idle and save power.

(b)

Decoder

Bank O
1k x 64

v

Bank 1
1k x 64

o

Bank 15
1k x 64

A;m

D63:O

UiO ¢ Department of Informatics
University of Oslo

Tiling =
Bit slicing & banking

(c) 2005-2012 W. J. Dally

Decoder

Bank 30 L Bank 20
4k x 16 4k x 16

I

Bank 10 L Bank 00
4k x 16 4k x 16

| |
163 De3.08 163 D47:32

|
163 D116 16j| Dis:o

Bank 31 L Bank 21
4k x 16 4k x 16

[

Bank 11 L Bank 01
4k x 16 4k x 16

I I
16\ D63:48 16\ D47:32

T
163 D116 16j| Diso

Bank 32 L Bank 22
4k x 16 4k x 16

I

Bank 12 L Bank 02
4k x 16 4k x 16

T T
163 De3.08 163 Ds7:32

T
163 D116 16j| Dis:o

Bank 33 L Bank 23
4k x 16 4k x 16

I

Bank 13 L Bank 03
4k x 16 4k x 16

I I
16‘ D63:48 16‘ D47:32

|
163 D316 165 Dis:o
64

D63:0

UiO ¢ Department of Informatics

University of Oslo

Interleaving

r N*M

Using a crossbar switch

for a tiled set of banks
{a, di, cmd}o

Allow for multiple read
or writes during the
same cycle

Ex: Quad data rate {a, di, cmd}ymg)

Allocator
N*M gnt

{a, di, cmd}yo be dopo do,o

° °

° °

° °
{a, di, cmd}pn-1 dop(m-1) dorm-1
bn-1 —

(QDR) RAM

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

Hierarchy (->IN2060)

16GB 16GB
A [200107f£:108000] DRAM DRAM A [200000000:0]
|
1MB Array 2 L2 MRU 1MB
A [107fff:8000] ¥
32kB o L1 MRU 32kB
A [7fff:0] Y
Req
Req

(a)

(c) 2005-2012 W. J. Dally

(b)

UiO ¢ Department of Informatics
University of Oslo

Summary

« DHA
— 24-25.3, p 521-540
— (25.4 can be read to connect the dots from IN2060)

(c) 2005-2012 W. J. Dally

