
IN 3160, IN4160

Interconnect, Memory

Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design (processor,

memory and logic on a chip). Lab assignments

provide practical experience in how real design can

be made.

After completion of the course you will:

• understand important principles for design and

testing of digital systems

• understand the relationship between behaviour

and different construction criteria

• be able to describe advanced digital systems at

different levels of detail

• be able to perform simulation and synthesis of

digital systems.

Goals for this lesson:

• Know terms and structure

• Interconnect types
• buses

• crossbar switches

• interconnect networks

• Know typical structures for memory

address decoding

• Bit slicing

• Banking

• Tiling

28.04.2022 3

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

28.04.2022 4

• Interconnect

• bus

• crossbar

• network

• Memory

• SRAM

• DRAM

• Memory organization

• Banking

• Slicing

• Tiling

Interconnect

• Many clients need to communicate

• Ad-hoc point-to-point wiring or shared interconnect

• Like a telephone exchange
(c) 2005-2012 W. J. Dally

Client 0

Interconnect

Client 1 Client n-1

Bus

Client 0 Client 1 Client n-1

Bus
Interface

Bus
Interface

Bus
Interface

Bus
Arbiter

bus

• interconnect with (multiple)

clients connected to one (often

multiple bit) data line.

• Only one client can send data

at a time, but there can be

multiple receivers.

• The bus arbiter selects which

client is allowed to use the bus.

• External buses:

– tristate

• Internal buses

– or'ing of client signals

VHDL for a simple bus interface

(c
) 2

0
0
5
-2

0
1
2
 W

. J
. D

a
lly

Client 0 Client 1 Client n-1

Bus
Interface

Bus
Interface

Bus
Interface

Bus
Arbiter

bus
-- Combinational Bus Interface

-- t (transmit) and r (receive) in signal names are from the

-- perspective of the bus

library ieee;

use ieee.std_logic_1164.all;

entity BusInt is

generic(aw: integer := 2; -- address width

dw: integer := 4); -- data width

port(cr_valid, arb_grant, bt_valid: in std_logic;

cr_ready, ct_valid, arb_req, br_valid: out std_logic;

cr_addr, bt_addr, my_addr: in std_logic_vector(aw-1 downto 0);

br_addr: out std_logic_vector(aw-1 downto 0);

cr_data, bt_data: in std_logic_vector(dw-1 downto 0);

br_data, ct_data: out std_logic_vector(dw-1 downto 0));

end BusInt;

architecture impl of BusInt is

begin

-- arbitration

arb_req <= cr_valid;

cr_ready <= arb_grant;

-- bus drive

br_valid <= arb_grant;

br_addr <= cr_addr when arb_grant else (others => '0');

br_data <= cr_data when arb_grant else (others => '0');

-- bus receive

ct_valid <= '1' when (bt_valid = '1') and (bt_addr = my_addr) else '0';

ct_data <= bt_data ;

end impl;

BUS

Client

Arbiter

cr_valid

arb_grant

bt_valid

cr_ready
ct_valid

arb_req

br_valid

cr_addr

bt_addr

my_addr

br_addr

cr_data

br_data

ct_data

bt_data

Crossbar Switch
Sending
Client 0

Sending
Client 1

Allocator

Receiving
Client 0

Receiving
Client 1

Receiving
Client n-1

Sending
Client m-1

(c) 2005-2012 W. J. Dally

• interconnect with multiple

senders and receivers.

• Several senders may be active

at a time, as long as a unique

path can be allocated to each

reciver.

• Throughput can be increased

by allowing buffering at each

crosspoint..

Crossbar Switch 2x2 example

Sending
Client 0

Sending
Client 1

Allocator

Receiving
Client 0

Receiving
Client 1

Receiving
Client n-1

Sending
Client m-1

architecture impl of Xbar22 is
signal req00, req01, req10, req11: std_logic;
signal grant00, grant01, grant10, grant11: std_logic;

begin
-- request matrix
req00 <= '1' when not c0r_addr and c0r_valid else '0';
req01 <= '1' when c0r_addr and c0r_valid else '0';
req10 <= '1' when not c1r_addr and c1r_valid else '0';
req11 <= '1' when c1r_addr and c1r_valid else '0';

-- arbitration 0 wins
grant00 <= req00;
grant01 <= req01;
grant10 <= req10 and not req00 ;
grant11 <= req11 and not req01 ;

-- connections
c0t_valid <= (grant00 and c0r_valid) or (grant10 and c1r_valid);
c0t_data <= (c0r_data and (dw-1 downto 0 => grant00)) or

(c1r_data and (dw-1 downto 0 => grant10));
c1t_valid <= (grant01 and c0r_valid) or (grant11 and c1r_valid);
c1t_data <= (c0r_data and (dw-1 downto 0 => grant01)) or

(c1r_data and (dw-1 downto 0 => grant11));

-- ready
c0r_ready <= (grant00 and c0t_ready) or (grant01 and c1t_ready);
c1r_ready <= (grant10 and c0t_ready) or (grant11 and c1t_ready);

end impl;

entity Xbar22 is
generic(dw: integer := 4); -- data width
port(

c0r_valid, c0t_ready, c1r_valid, c1t_ready: in std_logic;
c0r_ready, c0t_valid, c1r_ready, c1t_valid: out std_logic;
c0r_addr, c1r_addr: in std_logic;
c0r_data, c1r_data: in std_logic_vector(dw-1 downto 0);
c0t_data, c1t_data: out std_logic_vector(dw-1 downto 0));

end Xbar22;

Interconnection Networks

Client 12 Client 13

Router02

Client 14 Client 15

Router12
cx02

Client 16 Client 17

Router22
cx12

Client 6 Client 7

Router01

cy0
1 Client 8 Client 9

Router11

cy1
1

cx01

Client 10 Client 11

Router21

cy2
1

cx11

Client 0 Client 1

Router00

cy0
0 Client 2 Client 3

Router10

cy1
0

cx00

Client 4 Client 5

Router20

cy2
0

cx10

(c) 2005-2012 W. J. Dally

• multiple senders and receivers.

• Packets are buffered by routers

that transfer the packet in the

direction of the recipient.

• Routing algorithm will be

depending on the network

topology.

– star/tree topology (LAN)

– ring topology

– mesh topology

Interconnection Networks

Client 0 output

Router00

cx00e

Router10

cx10e

Router20

cy20n

Router21

Client 11 input

0 1 2 3 4 5 6 7 8 9 10 11Cycle

(c) 2005-2012 W. J. Dally

Memory

(c) 2005-2012 W. J. Dally

Address

Data

Capacity

Bandwidth

Latency

Granularity

• Row of decoders, column multiplexers

• Typical restriction of array size
– 256 x 256 = 65536 = 64k bit = 8k Byte

– electrical restriction

• Larger memory need to be multiples of arrays

at the maximum size

SRAM

28.04.2022 13

stored

bit

wordline

bitline

wordline

bitline bitline

• Both asynchronous and

synchronous versions exist

• Stored bit is (weakly) upheld by

the inverters.

• When wordline is activated

– bitline either

• propagates the weak value or

• sets the bit value if it is driven

(strong)

• The physical layout can be

more complex, including

transistors for precharging

bitlines etc.

DRAM Operation

Dram Chip

Act <Bi, Rj>

Bi

Rj

0x0011223344556677

Sense Amps

Dram Chip

Bi

Rj

XXXXXXXXXXXXXXXX

0x0011223344556677

Read <Bi, C2>

Dram Chip

Bi

Rj

XXXXXXXXXXXXXXXX

0x0011223344556677

Precharge <Bi, Rj>

(a) (b)

(c)

• For each read, the stored

capacitor charge is removed,

and thus need to be re-written

to remain stored.

• Several columns in one row can

be read before rewrite.

• Rewrite (D&H: precharge

operation) takes a certain time

– DRAM stores bit as charge on

capacitors.

• RAM cells need periodically

refresh that performs read/write

What if you need more memory or more bandwidth than one primitive?

(c) 2005-2012 W. J. Dally

Bit-Slicing

Slice 15
16k x 4

a13:0 14

Slice 14
16k x 4

Slice 0
16k x 4

4
D63:60

4
D59:56

4
D3:0

64

D63:0

Bank 0
1k x 64

a13:0 14

a13:10 4
Decoder

a9:0 10

Bank 1
1k x 64

Bank 15
1k x 64

64

D63:0

(a)

(b)

• Several slices shares the same

address

• Data is read from a row of

slices in parallel.

Banking

Slice 15
16k x 4

a13:0 14

Slice 14
16k x 4

Slice 0
16k x 4

4
D63:60

4
D59:56

4
D3:0

64

D63:0

Bank 0
1k x 64

a13:0 14

a13:10 4
Decoder

a9:0 10

Bank 1
1k x 64

Bank 15
1k x 64

64

D63:0

(a)

(b)

• Banked memory is organized in

columns of array banks

• Parts of the address is decoded

to enable output from the

selected bank only.

– May be used to have the other

banks idle and save power.

Tiling =

Bit slicing & banking

(c) 2005-2012 W. J. Dally

Bank 30
4k x 16

a13:0 14

a13:12 2
Decoder

a11:0 12

64
D63:0

Bank 20
4k x 16

Bank 10
4k x 16

Bank 00
4k x 16

D63:4816 D47:3216 D31:1616 D15:016

Bank 31
4k x 16

Bank 21
4k x 16

Bank 11
4k x 16

Bank 01
4k x 16

D63:4816 D47:3216 D31:1616 16

Bank 32
4k x 16

Bank 22
4k x 16

Bank 12
4k x 16

Bank 02
4k x 16

D63:4816 D47:3216 D31:1616 16

Bank 33
4k x 16

Bank 23
4k x 16

Bank 13
4k x 16

Bank 03
4k x 16

D63:4816 D47:3216 D31:1616 16

D15:0

D15:0

D15:0

Interleaving

(c) 2005-2012 W. J. Dally

b0

bN-1

Allocator

{a, di, cmd}r0

{a, di, cmd}r(M-1)

{a, di, cmd}b0

{a, di, cmd}b(N-1)

dob0

dob(M-1)

dor0

dor(M-1)

N*M

N*M

gnt

r

• Using a crossbar switch

for a tiled set of banks

• Allow for multiple read

or writes during the

same cycle

• Ex: Quad data rate

(QDR) RAM

Hierarchy (->IN2060)

(c) 2005-2012 W. J. Dally

Array 1

Array 2

DRAM

Req

32kB
A [7fff:0]

1MB
A [107fff:8000]

16GB
A [200107fff:108000]

L1

L2

DRAM

Req

MRU 32kB

MRU 1MB

16GB
A [200000000:0]

(a) (b)

Summary

(c) 2005-2012 W. J. Dally

• DHA

– 24-25.3, p 521-540

– (25.4 can be read to connect the dots from IN2060)

