
IN3160, IN4160 Digital system design

Introduction + HDL, PL and Design flow

Yngve Hafting

Overview

– General information
• Course management

• Schedule

• Course Goals

• Curriculum

• Lab assignments

• Who are we

– Motivation
• Why Digital Design?

• Why HDL?

– Intro to programmable Logic
• What is programmable logic?

• Why choose programmable logic?

– Design Flow for digital designs

– Intro to our hardware…:
• Our hardware: Zedboard

– Architecture

– Documentation

• «Our» HDL: VHDL

- Assignments and suggested reading for this week

Course Management

• Lecturers:

– Roar Skogstrøm (II’er IFI, Kongsberg Defence Communications)

– Alexander Wold (II’er IFI, FFI)

– Yngve Hafting (Universitetslektor IFI/ROBIN)

• Lab supervisors / teachers:

– Arne Martin Dybendal Foldvik (Student)

– Georg Magneshaugen (Student)

– Karl Jørgen Giercksky Russnes (Student)

– Sander Elias Magnussen Helgesen (Student)

– Seyed Mojtaba Karbasi (PhD)

Lectures

Tuesday 14:15 -16:00, Zoom (and OJD, C «3437»)

Thursday 12:15-14:00, Zoom (and OJD, C «3437»)

Lab
LISP (2428): No group education, lab supervision poll next slide

https://www.mn.uio.no/ifi/om/finn-fram/apningstider/

http://www.uio.no/studier/emner/matnat/ifi/IN3160/

(covers also INF4160)

Web

Monday Tuesday Wednesday Thursday Friday

Lecture 12-14

Lecture 14-16

https://www.mn.uio.no/ifi/om/finn-fram/apningstider/
http://www.uio.no/studier/emner/matnat/ifi/IN3160/

Where do we stand + lab supervision poll?

• www.menti.com

• Code 8115 6823

http://www.menti.com/

IN1020

Introduction to

computer technology

Study program connections

IN5200

Advanced Digital System Design

IN2060

Digital Design and

Computer Architecture

Master

Bachelor
IN3160/IN4160

Digital System Design

Relevancy

Robotics
Intelligent systems

Analog

electronics

Digital

electronics

Asic

Design
FPGA

Design

SoC

Design

Software

Design

IN3160/IN4160

Digital System Design

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

• In this course you will learn about the design of advanced digital systems.

• This includes programmable logic circuits, a hardware design language and system-on-

chip design (processor, memory and logic on a chip).

• Lab assignments provide practical experience in how real design can be made.

• After completion of the course you´ll:...

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

... IN3160 vs IN4160 ...

IN3160

• After completion of the course you´ll:
– understand important principles for design and

testing of digital systems

– understand the relationship between behavior and

different construction criteria

– be able to describe advanced digital systems at

different levels of detail

– be able to perform simulation and synthesis of digital

systems.

IN4160

• After completion of the course you´ll:
– understand important principles for design and

testing of digital systems

– understand the relationship between behavior and

different construction criteria

– be able to describe advanced digital systems at

different levels of detail

– be able to perform advanced simulation and

synthesis of digital systems

– be able to perform advanced implementation and

analysis techniques

NOTE: these are MINIMUM requirements for passing an exam.

• You will be given the same opportunities to learn, and the curriculum is the same.

• Grading will be stricter for IN4160 due to added minimum requirements

• Otherwise, this course will be held as one.

Syllabus

• Dally, William J. - Harting, R. Curtis - Aamodt, Tor M.

Digital Design Using VHDL A Systems Approach

Cambridge University Press 2016

ISBN9781107098862

• Lectures and lecture slides

• Mandatory assignments

• Handouts

– Cookbook (will be available digitally)

– Articles

Compulsory lab assignments

• There are 10 compulsory lab assignments.

• All assignments must be completed to take the exam.

– Lab workload increases through the semester

• Lectures are prerequisite for some assignments

– Lectures most intensive in the beginning

• The lab assignments utilises the digilent Zedboard, featuring a

Xilinx Zynq 7020 device that includes both a hardcoded ARM

processor and FPGA fabric.

• By the end of this course you will design a system, using both

processor and FPGA fabric, that will both regulate, read and

display the speed of an electric motor connected to the board.
https://store.digilentinc.com/zedboard-zynq-7000-arm-fpga-soc-development-board/

General information

• Lab starts now! (Expect to use much time on the last few assignments)
– Assignments are available in Canvas!

– Assignments are individual.

– There will be one assignment using peer review only.

– Some assignments may require that you show your setup to the lab supervisor.
• Last year showed us labs can be done entirely remote, but on-site is strongly adviced.

• LISP (2428) is the LAB.
– Both hardware and software will be available in LISP.

• 4 boards with camera will be available online for those in quarantine/ isolation / specieal needs.

–

• Questions..?

Vortex (Course web) Canvas Discourse

Mostly open for all

• General course information

(Exam dates, etc)

• Lecture schedule with lecture

notes and screencast

• Announcements

• Syllabus

Enrolled students

• Mandatory

assignments

• Feedback on

assignments

Enrolled students

• Discussions

• Questions

https://astro-discourse.uio.no/

https://astro-discourse.uio.no/

IN3160

Introduksjon, HDL og PL

Hardware Description Language & Programmable Logic

Yngve Hafting

Wikipedia: U.S. Navy photo by Photographer’s Mate Airman

Marvin E. Thompson Jr.

https://www.komplett.no/product/11257/pc-nettbrett/komplett-pc/komplett-gamer-

xtreme/komplett-gamer-xtreme-i250?offerId=KOMPLETT-310-11257#
https://www.sparkfun.com/products/14829

http://www.aes-eu.com/10gbe-fpga-nic.php

https://www.youtube.com/watch?v=rVlhMGQgDkY

h
tt

p
:/

/w
w

w
.m

o
is

u
n

d
.c

o
m

/2
0

1
4

/0
4
/0

8
/o

p
n
in

g
-a

v
-n

y
-b

a
s
e
s
ta

s
jo

n
-i
-a

s
e
ra

l/

Why HDL?

15

• Syntesis to design

Why HDL?

• Technology independent code

• Different abstraction layers

INF3430 / INF4431 16

Sequential statements:

if a=b then

aeqb <= ’1’;

else

aeqb <= ’0’;

end if;

Concurrent statements:

aeqb <= ’1’ when a=b else ’0’;

Boolean equations:

aeqb <= (a(0) xor b(0))

nor (a(1) xor b(1));

Netlist:

U1: xor2 port map(a(0), b(0), x(0));

U2: xor2 port map(a(1), b(1), x(1));

U3: nor2 port map(x(0), x(1), aeqb);

IN3160
17

Why HDL?

• Portability

• IEEE Standards
– VHDL/System Verilog are both IEEE (Institute of

Electrical and Electronics Engineers) standards

• VHDL - IEEE 1076

• System Verilog - IEEE 1364
Compiler A Compiler B Compiler C

PLD CPLD FPGA

Any simulator/synthesis tool

Any vendor/device

HDL code

One design

18

Why HDL?
• Simple mainteenance/expansion of a design

COUNT : inout std_logic_vector(3 downto 0); -- Count value

COUNTER :

process (RESET,CLK)

begin

if(RESET = '1') then

COUNT <= (others => '0');

elsif rising_edge(CLK) then

COUNT <= COUNT + 1;

end if;

end process COUNTER;

IN3160

19

Why HDL?

4 bit counter:
COUNT : inout std_logic_vector(3 downto 0); -- Count value

IN3160

IN3160 20

8 bit …

21

16 bit …

IN3160

22

32 bit...

IN3160

HDL vs software

23

HDL «Hardware description

language»

Software programs

Defines the logic function of a circuit Defines the sequence of instructions
and which data shall be used for one or
more processors or processor cores

CAD tools syntetizises designs to

enable realization using physical gates.

A compiler translates program code to

machine code instructions that the

processor can read sequentially from

memory

Implemented using programmable
logic (PL, FPGA, CPLD, PLD, PAL, PLA, …)
or ASICs (application specific circuits)
(“ASICs”, processors, ..-chips,.. etc.)

Is stored in computer memory

Verilog (SystemVerilog)
VHDL (VHDL 2008)

(System C m. fl.)

C, C++, C#, Python, Java, assemblere

(ARM, MIPS, x86, …) Fortran, LISP,

Simula, Pascal, osv…

process(reset, clk)
begin

if (reset = ‘1’) then
sum <= '0';

elsif rising_edge(clk) then
sum <= a + b;

end if;
end process;

+

a b

n

n+1

n

D

CLK

Q
sum

RES

n+1

reset

clk

int sum(int a, int b){
int s;
s = a + b;
return s;

}

MOV R5, #0 ;set base adr
LDR R7, [R5, #8] ;load reg R7
LDR R8, [R5, #12];load reg R8
ADD R0, R7, R8 ;R0=R7+R8
STR R0, [R5, #16];store R0

01001100 10011001 00100100 01001010
11001100 10111001 01100100 11110110
01001100 10011001 00111100 11101010
01001100 10011001 00100100 01011010
…

(binary code is random, for illustration only)

HDL

Code for generating and parsing simulation data

(Test benches)

HDL

• VHDL = VHSIC HDL:
– Very High Speed Integrated Circuit

Hardware Description Language

– The purpose is to generate hardware,

and verify it through simulation.

– Synthesizable (realizable) code work

concurrently (in parallel).

– Code for simulation include things such as

file I/O which cannot be synthesized.

– Testbenches can and will use some

synthesizable elements, but will in general

look more like other sequential languages,

and use sequential statements.

This may be confusing at times...

– VHDL does come with several libraries.

code for generating multiple

instances or variants of entities

Synthesizable code

IN1
OUT

IN3

IN2

What is PL ?

(Programmable Logic)

• PL = FPGA, CPLD, PLA…

(Field Programmable Gate Array,

Complex Programmable logic Device)

• PL vs processor

(FPGA vs CPU, MCU) ?

• PL vs ASIC (Application

Specific Integrated circuit)?
&

+

II

*

/

/
&0

0

0

Q

Q
S ET

C LR

D

J

Q

Q

K

S ET

C LR

Q

Q
S ET

C LR

D

J

Q

Q

K

S ET

C LR

ENB

ENB

ENB

ENB

ENB

LUT

BRAM

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

CLB

0

0

0

0

0

U/D

Re set

B1

B4

Car ry ou t

ENB

Co unte r

Vin

GND

Vref

D1

D4

Sign

ENB

A/D C onvert er

CLB
Q

Q
SET

CLR

D

LUT

EN
B

0

1

0

1

When or why choose

programmable logic?

• (Verify behavior of ASIC)

• Prototyping flexibility

– Lots of multi purpose IO

– Reprogrammable

• Small batch production

• Parallellism

• Custom / fast

• Runtime reconfigurability

• …

• When low component cost

is extremely important.

• When dedicated HW is

well suited.

• When extreme speed is

required => ASIC

• …

When to avoid

programmable logic?

IN3160

Digital Design Flow
Yngve Hafting

Overview

– Digital design tools.

– Specification

– Design entry, synthesis and PAR

– Timing analysis

– Timing simulation

– Testing

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Digital Design tools…

• Design entry:

– Use your favourite HDL text editor

(Notepad++, Emacs, Vivado or Questa).

• Simulation (RTL, Gate Level, Timing)

– Here: Typically using Questa (=Modelsim)

• Synthesis, Implementation, Programming

– Vendor specific tools,

• Here: Vivado by Xilinx

– Also possible: Digilent tools for programming.

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Digital Design Flow: Specification

1. Define the problem

2. Draw a functional diagram

– block diagram with major components and connections

3. Identify IO requirements

4. Identify necessary interface circuits

5. Decide on HDL (VHDL, Verilog, System C,…)

6. Draw a program flowchart (ASM diagram)

– Defines how the design shall work logically.

– By hand or using tools such as:

• Visio, Draw.io, Lucid chart, etc.

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Design entry, synthesis and PAR

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

• RTL = Register Transfer Level

– RTL does not use specific gates or technology

– Designs are mostly done in RTL

– RTL simulation can be used to verify logic function.

• Gate level synthesis

– Technology specific gates are selected for all components in the design.

• Typically a synthesizer will pick gates specific for the (FPGA) chip family we use.

– Once we have a gate level design we can
• calculate gate-, but not propagation delays

• Simulate using gate delays.

• Place and route

– After synthesis gates can be placed within a specific (FPGA) chip.

– When place and route is performed propagation delays may also be simulated thus

– We can do all timing simulation, including propagation delays.

For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR

gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much

faster than a ripple-carry adder for N > 16

IN2060: Carry-Lookahead Adder Delay

Static timing analysis
• Performed by EDA tools on synthesized or routed designs

• Will attempt to

• find critical path(s) and

• check if timing requirements (constraints) can be met.

• Simulating synthesized or routed designs

• Can use the same testbench as for RTL designs

– Verification and test benches will be discussed further later…

• Uses timing information for every component in use.

– Requires much more resources than RTL simulation.

– Can be slow for complex designs

• Hence the option to simulate at gate level, before performing PAR.

• Device programming…

– (Usually done from vivado, but third part tools may be used).

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Timing simulation, programming

Testing

• «Testing» is to find physical errors in a device.

– «Verification» is to check the design

• although we use «test benches» for simulation

• Design for testability

– Means that we design for physical testing.

– We may touch this later in the course.

• Spend more time in early phases!

– Avoid spending much more time fixing bugs later

In the conceptual
review

While coding

When compiling

When simulating

During physical
testing

By the customer

In the design phase

M
y

er
ro

rs
 w

ill
 b

e
fo

u
n

d
..

.

Introduction to course hardware and software tools

• Zedboard

• Questa

• Vivado

• ROBIN wiki:
https://robin.wiki.ifi.uio.no/Hovedside

– Software

• FPGA tools
https://robin.wiki.ifi.uio.no/FPGA_tools

• Cook book and ZedBoard documentation

– Canvas – IN3160

• Cookbook_v3_5.pdf

• ZedBoard HW UG vX_X.pdf

– Zynq intro video:
https://www.xilinx.com/video/soc/zedboard-overview-featuring-zynq.html

https://robin.wiki.ifi.uio.no/Hovedside
https://robin.wiki.ifi.uio.no/FPGA_tools
https://www.xilinx.com/video/soc/zedboard-overview-featuring-zynq.html

Digital Design tools…

• Design entry:

– Use your favourite HDL text editor

(Notepad++, Emacs, Vivado or Questa).

• Simulation (RTL, Gate Level, Timing)

– Here: Typically using Questa (=Modelsim)

• Synthesis, Implementation, Programming

– Vendor specific tools…

• Here: Vivado by Xilinx

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Simulation and test benches

• Simulation can be run using three different

approaches:

1. Manually setting inputs and specifying time

intervals in the GUI or console

• This way is tedious if much testing is to be

done.

• Normally this is only done initially.

2. To make scripts (tcl for Questa) in a separate

(.do) file.

• The script commands will be added to the

console during manual use, and can be copied

as text into a .do file.

• setting up the simulation windows can be done

reusing script commands.

3. Create a test bench in VHDL

• This is the preferred method

– possible in combination with running scripts

• VHDL can be used to generate code for

applying test vectors sequentially to the inputs

of an entity for simulating.

• Test bench code is not synthesizable

• easy to read and use test data for each

particular design,

• Can be used both prior and post synthesis or

implementation

Suggested reading, Mandatory assignments

• D&H:

– 1.4 p 11-13

– 1.5 p 13-16

– 1.6 p 16-17

– 2.1 p 22-28

– 2.2 p 28-30

– 2.3 p 30-34

– 3.1-3.5 p 43-51 = repetition (known from previous courses)

• Oblig 1: «Design Flow»

– See canvas for further instruction.

Note: Some of this content will be covered in depth in later lectures.

- Read this to familiarize yourself with content, form and language.

