
IN3160, IN4160

Introduction to VHDL

Basic layout for VHDL

Yngve Hafting

Messages:

• Assignment 2 is revised

– Please re-load from canvas.

– Do try program the boards on LISP.

• Report problems to lab supervisors.

• Please select a LISP machine, by writing your user name on

https://docs.google.com/spreadsheets/d/1Xyr6HJnZzmHxpaLTAED

MDBz0qIXPJdZMPbqneaP4CLg/edit#gid=0

• Please negotiate timeslots with your fellow students sharing

machine

https://docs.google.com/spreadsheets/d/1Xyr6HJnZzmHxpaLTAEDMDBz0qIXPJdZMPbqneaP4CLg/edit#gid=0

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behavior and different construction

criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Know the basic structure of VHDL
• Know which design entities there are

• Know how assignment and statements works

• Know the basic functionality of processes

• Be able to create designs using VHDL

• Know the relation between phsyical signals and their declaration.

• Know the difference between basic coding styles

• Know basic layout principles

• Guidelines for capital letters

• Basic layout types

• Principles for indentation, commenting, naming, punctuations

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

– Repetition

– VHDL Structure

• Design entities

• Signals, variables, vectors

• Processes

• Libraries

• STD_LOGIC

• Operators

• String literals

– Code layout principles

– Next lesson: Combinational logic

- Assignments and suggested reading for this week

HDL

Code for generating and parsing simulation data

(Test benches)

HDL

• VHDL = VHSIC HDL:
– Very High Speed Integrated Circuit

Hardware Description Language

– The purpose is to generate hardware,

and verify it through simulation.

– Synthesizable (realizable) code work

concurrently (in parallel).

– Code for simulation include things such as

file I/O which cannot be synthesized.

– Testbenches can and will use some

synthesizable elements, but will in general

look more like other sequential languages,

and use sequential statements.

This may be confusing at times...

– VHDL does come with several libraries.

code for generating multiple

instances or variants of entities

Synthesizable code

IN1
OUT

IN3

IN2

HDL vs software

6

HDL «Hardware description

language»

Software programs

Defines the logic function of a circuit Defines the sequence of instructions
and which data shall be used for one or
more processors or processor cores

CAD tools syntetizises designs to

enable realization using physical gates.

A compiler translates program code to

machine code instructions that the

processor can read sequentially from

memory

Implemented using programmable
logic (PL, FPGA, CPLD, PLD, PAL, PLA, …)
or ASICs (application specific circuits)
(“ASICs”, processors, ..-chips,.. etc.)

Is stored in computer memory

Verilog (SystemVerilog)
VHDL (VHDL 2008)

(System C m. fl.)

C, C++, C#, Python, Java, assemblere

(ARM, MIPS, x86, …) Fortran, LISP,

Simula, Pascal, osv…

process(reset, clk)
begin
if (reset = ‘1’) then
sum <= '0';

elsif rising_edge(clk) then
sum <= a + b;

end if;
end process;

+

a b

n

n+1

n

D

CLK

Q
sum

RES

n+1

reset

clk

int sum(int a, int b){
int s;
s = a + b;
return s;

}

MOV R5, #0 ;set base adr
LDR R7, [R5, #8] ;load reg R7
LDR R8, [R5, #12];load reg R8
ADD R0, R7, R8 ;R0=R7+R8
STR R0, [R5, #16];store R0

01001100 10011001 00100100 01001010
11001100 10111001 01100100 11110110
01001100 10011001 00111100 11101010
01001100 10011001 00100100 01011010
…

(binary code is random, for illustration only)

VHDL structure

• Design entities

• Architecture styles

• Ports and signals

• Vectors

• Assignment

• Libraries

• STD_LOGIC data type

• Operators

VHDL Design entities

overview 1/2

• Small design files will normally contain

both entity and an architecture

• In larger designs these may be

separated, several architectures can be

used for one entity.

• Details will be revealed later..

Entity
- Defines the interface to the surronding

environment

IO ports
- Defines the entity interface

Generics
-Values that can be used inside the entity as

constants

Architecture body
- Defines what an entity does

Declarations
- Declaration of internal signals,

components and sub programs that are
used in the architecture

Type declarations
to be used inside the architecture

Components
- other design entities that are used as a

part of an architecture

Ports
- Definition of input and output ports of the

component

Constants
to be used inside the architecture

Signals
for communication inside the architecture

Subprograms
- Instantiable code that provide a value or

perform one or more tasks

Procedures
- algorithms that performs a task

Procedure body (algorithm)
an algorithm that performs assignments

Declarations
For local use

Variables
generated each call (no storage)

Constants

Types

Subprograms

Functions
- algorithms that provide a value

Function body
an algoritm that calculates the return value

Declarations
For local use

Variables
generated each call (no storage)

Constants

Types

Subprograms

Statements
- Defines what the architecture does

Generate statements
- Specifies if and/or how many instances of

other statements should be instantiated

«Concurrent» statements
- Direct signal assignment

-Signal assignment through procedure calls

Component instantiation
- Instantiates one or more components

Port maps
- Wires component ports to the signals in the

architecture

Processes
- signal assignment using sequentially

ordered statements

Sensitivity list
- a list that tells the compiler which signals

that may trigger events in the process

Process body
- Sequentially ordered statements that

describes how signals are driven

Declarations
For local use

Variables
generated once (does store values)

Constants

Subprograms

Types

VHDL Design entities

overview 2/2

• VHDL uses and can be used to

create packages

• We will almost always use

packages in precompiled

libraries.

• Configuration files can be used to specify

which components or architectures that shall

be used in (large) designs

– (Not a primary concern for in3160)

Package body
Defines the package implementation

Type declarations for local use

Constants for local use

Subprograms
- Instantiable code that provide a value or perform

one or more tasks

Procedures
algorithms that performs assignments

Procedure body (algorithm)
an algorithm that performs assignments

Declarations
For local use

Variables
generated each call (no storage)

Constants

Types

Subprograms

Functions
algorithms that provide a return value

Function body
an algoritm that calculates the return value

Declarations
For local use

Variables
generated each call (no storage)

Constants

Types

Subprograms

Package declaration
- Declares everything that should be publicly

available in the package

Declarations
- Declaration of all that should be visible

outside the package

Type declarations

Components
- other design entities that are used as a

part of an architecture

Ports
- Definition of input and output ports of the

component

Constants

Subprograms
- Instantiable code that provide a value or

perform one or more tasks

Procedures and their parameters

Functions and their parameters

Configuration
Defines links between modules, such as which

architectures shall be linked to which entities in
a design with multiple architectures for an

entity.

Using a configuration file for this can be useful
for large designs, for example by switching
thoroughly tested components with logical

models to simulate faster

Configuration statements can also be used
directly in declarative regions of each design

unit, utilizing the use clause

Use clauses

VHDL Entity and Architecture

• Entity defines Input and Output ports in the design

– There is only one entity in a vhdl file..

• Architecture defines what the design does.

– There can be several architectures for an entity

– Architectures, may be defined using different styles (next

slide)

• “RTL” and “Dataflow” are just names providing information;

changing these names would not change function.

D

CLK

Q

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity D_flipflop is
port(
clk: in std_logic;
D : in std_logic;
Q : out std_logic

);
end entity D_FLIPFLOP;

architecture RTL of D_flipflop is
begin
process (clk) is
begin
if rising_edge(clk) then
Q <= 'D';

end if;
end process;

end architecture RTL;

architecture data_flow of D_flipflop is
signal e, f, g, h, i, j, k, l: std_logic;

begin
-- concurrent statements
e <= NOT (D AND clk);
f <= NOT (e AND clk);
g <= NOT (e AND h);
h <= NOT (f AND g);
i <= NOT (g AND NOT clk);
j <= NOT (h AND NOT clk);
k <= NOT (l AND i);
l <= NOT (k AND j);
Q <= k;

end architecture data_flow;

4 styles of architecture modeling

Structural
• Ties components

together

• Typically used in test

benches, and when

using predefined

components

Data Flow
• typically used for

simple concurrent

statements

• will easily become

unreadable if used

extensively.

A

B

C

D
E
F

G

H

I

Behavioral

• Simulation models only

• Not for synthesis or implementation

RTL, register

transfer level
• easy to read

• describes registers

and what happens

between them

• «default» for

sequential logic

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity my_thing is
port (
A: in std_logic;
B: in std_logic_vector(5 downto 0);
C, D, E, F: in std_logic;
G: out std_logic;
H: out std_logic_vector(64 downto 0);
I: out std_logic

);
end entity my_thing;

architecture structural of my_thing is
signal js: std_logic;
signal ks: std_logic_vector(64 downto 0);
signal ls: std_logic;

component apple is
port (
A: in std_logic;
B: in std_logic_vector(5 downto 0);
C: out std_logic;
D: out std_logic_vector(64 downto 0)

);
end component;

component pear is
port (
A, B, C: in std_logic;
D, E: out std_logic

);
end component;

component banana is
port (
smurf: in std_logic_vector(64 downto 0);
cat, dog, donkey: in std_logic;
horse: out std_logic;
monkey: out std_logic_vector(64 downto 0)

);
end component;

begin -- port map (component => My_thing)
U1: apple port map(
A => A,
B => B,
C => js,
D => ks

);

U2: pear port map(
A => D,
B => E,
C => F,
D => ls,
E => I

);

U3: banana port map(
smurf => ks,
cat => js,
dog => C,
donkey => ls,
horse => G,
monkey => H

);

end architecture structural;

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity D_flipflop is
port(

clk: in std_logic;
D: in std_logic;
Q: out std_logic

);
end entity D_flipflop;

architecture RTL of D_flipflop is
begin

process (clk) is
begin

if rising_edge(clk) then
Q <= 'D';

end if;
end process;

end architecture RTL;

architecture data_flow of D_flipflop is
signal e, f, g, h, i, j, k, l: std_logic;

begin
-- concurrent statements
e <= not (D and clk);
f <= not (e and clk);
g <= not (e and h);
h <= not (f and g);
i <= not (g and not clk);
j <= not (h and not clk);
k <= not (l and i);
l <= not (k and j);
Q <= k;

end architecture data_flow;

Ports and signals

• Ports define the entity interface

– IN:

• can only drive

• cannot read or be assigned to a signal

– OUT:

• signals can only be driven

• They should be assigned in the architecture
(In VHDL 2008, output ports can be read as an internal signal).

– INOUT

• Can be both driven and read

(typical use is for buses)

• Signals are internal

– For connecting internal modules, subprograms

and processes.

My Entity

INOUT
ENB

OUTIN

Ports continued

My Entity

INOUT
ENB

OUTIN

INOUT is for tying input and output to the same pin
• should implement tristate functionality.

• ‘Z’ means it is not driven (tristate)
• Typically to be used when connecting a bus that can have multiple

drivers.

DO NOT use INOUT for convenience!
• The compiler will not alert you if you are driving from two

sources simultaneously.

• May cause electrical faults

• INOUT may infer inferior structures (long delays)

•

use an extra signal unless you need to assign both input and output

to the same physical location.

Type «Vectors»

• signal my_sig std_logic;

• signal my_vec std_logic_vector(3 downto 0);

14

my_vec(3)

my_vec(2)

my_vec(1)

my_vec(0)

D

CLK

Q

D

CLK

Q

D

CLK

Q

D

CLK

Q

my_vec(3)

my_vec(2)

my_vec(1)

my_vec(0)

my_sig

D

CLK

Q my_sig

Signals and variables

• Signals are for inter-architecture communication

– Between processes, modules and subprograms

• Variables are subprogram(or process)-internal

– To make code clearer, and more local.

• Example note:

– placement of s&v declarations

– Signal assignment order is irrelevant outside processes

architecture example of sigvar is

-- (signal) declarations

signal S, T : std_logic;

begin

-- statements

S <= A and B;

process (A,B) is

-- (variable) declarations

variable V : std_logic;

begin

-- process body

V := ‘0’;

-- …

end process;

X <= S XOR T;

end architecture;

Signal and variable assignment

• Signals can be used concurrently

– both in and outside processes

– Signals are assigned using <=

– Signals uses event based updates
• ie after a process is complete.

• Variables can only be used inside processes and

subprograms

– Variables are assigned using :=

– Variables are updated immediately in simulation

– Processes can have variables store values

• Initialized at the beginning of simulation

– Subprograms (procedure, function) can not have

variables store values

• initialized on every call

A <= B; -- A reads B, or A is assigned to B’s ouput,
-- (A is a signal)

C := B; -- C is given B’s value, C is a variable
-- variables are used internally in processes.

D(6 downto 0) <= E(3 downto 1) & (others => ‘0’);
-- D is a vector having 7 input signals
-- D(6) <= E(3)
-- D(5) <= E(2)
-- D(4) <= E(1)
-- D(3 downto 0) <= "0000"

Processes

• A process is one (concurrent) statement

– Ensures one driver for each signal by using priority.

• Signals are only updated only once..

– The process body has sequential priority

• Last assignment takes precedence over previous.

• Variables can be assigned multiple times within a process body(!)

– sensitivity list

• determines when the process body is invoked during simulation

• Event triggered

– Can be used to make sequential logic

• Clocked events infers flipflops (or latches)

Processes
- signal assignment using sequentially

ordered statements

Sensitivity list
- a list that tells the compiler which signals

that may trigger events in the process

Process body
- Sequentially ordered statements that

describes how signals are driven

Declarations
For local use

Variables
generated once (does store values)

Constants

Subprograms

Types

Process example
architecture example of sigvar is

-- declarations

signal S, T : std_logic;

begin

-- statements

S <= A and B;

process (A,B) is

-- decalarations

variable V : std_logic;

begin

-- process body

V := '0';
if (A = '1') then

V := '1';
end if;

if (B = '1') then

V:= '1';
end if;

T <= V;

end process;

X <= S XOR T;

end architecture;

library IEEE;

use IEEE.std_logic_1164.all;

entity sigvar is

port(

A, B : in std_logic;

X : out std_logic

);

end entity sigvar;

Libraries and Data types

• VHDL is built upon use of libraries and packages.

• You can both use existing ones, and create your own.

• Most used is the IEEE library, which contains

– The built-in standard (std) package, containing:

• bit, integer, natural, positive, boolean, string, character, real, time, delay_length

– std_logic_1164 (which defines the STD_LOGIC type)

– numeric_std (numeric operations for std_logic_vectors)

– std_logic_textio (to provide IO during simulation)

– numeric_bit (numeric operations for bit vectors)

– etc.

STD_LOGIC TYPE (requires std_logic_1164 package from IEEE library)

• STD_LOGIC is a type that has the following possible values
– ‘U’ Uninitialized (Typically seen in simulation before initializing values)

– ‘X’ Unknown (typically when a signal is driven to both 0 and 1 simultaneously)

– ‘0’ Driven low

– ‘1’ Driven High

– ‘Z’ Tristate

– ‘W’ Weak unknown (when driven by two different weak drivers)

– ‘L’ Weak ‘0’ (Typically for simulating a pulldown resistor)

– ‘H’ Weak ‘1’ (Typically for simulating a pullup resistor)

– ‘-’ Don’t care (Typically for assessing results in simulator).

• You will only assign (synthesizable) signals to ‘0’, 1’ and ‘Z’

• Type STD_LOGIC_VECTOR is array (NATURAL range <>) og STD_LOGIC

– STD logic vector is used for hardware. For simulation, other types (such as integer) may be faster. Thus we

use STD_LOGIC for hardware interactions, and other types when possible for test bench code.

std_logic -- values

21

Value Name Usage

‘U’ Uninitialized state Used as a default value

'X' Forcing unknown Bus contentions, error conditions, etc.

‘0’ Forcing zero Transistor driven to GND

‘1’ Forcing one Transistor driven to VCC

‘Z’ High impedance 3-state buffer outputs

‘W’ Weak unknown Bus terminators

‘L’ Weak zero Pull down resistors

‘H’ Weak one Pull up resistors

‘-’ Don’t care Used for synthesis and advanced modeling

0/1/Z

EN

0/1 0/1/Z

0/1/W

VCC

GND

EN

0/1 0/1/Z

0/1/L

GND

EN

0/1
0/1/Z

0/1/H

EN

0/1

VCC

0/1/Z

–- multiple drivers
signal c : std_logic;

Signal A/B 'U' 'X' '0' '1' 'Z' ‘W' ‘L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' ‘U'

'X' 'U' 'X' 'X' 'X' ‘X' 'X' 'X' 'X' ‘X'

'0' 'U' 'X' ‘0' ‘X' ‘0' ‘0' ‘0' '0' ‘X'

'1' 'U' 'X' ‘X' '1' ‘1' ‘1' ‘1' '1' ‘X'

'Z' 'U' 'X' ‘0' ‘1' ‘Z' ‘W' ‘L' ‘H' ‘X'

'W' 'U' 'X' ‘0' ‘1' ‘W' ‘W' ‘W' ‘W' ‘X'

'L' 'U' 'X' ‘0' ‘1' ‘L' ‘W' ‘L' ‘W' ‘X'

'H' 'U' 'X' '0' '1' ‘H' ‘W' ‘W' ‘H' ‘X'

'–' ‘U' ‘X' ‘X' ‘X' ‘X' ‘X' ‘X' ‘X' ‘X'

22

0/1/Z

EN

0/1 0/1/Z A

0/1/Z

EN

0/1 0/1/Z
B

C

Tri-state buffer

• Hardware can only read ‘0’ or ‘1’

• We can set tristate (high impedance)

to allow other sources to drive a bus.

• Simulation tools can use all possible

STD_LOGIC values.

23

ENB
B A

VHDL operator priority

• Functions are interpreted from left

to right (in reading order).

• Use paranthesis to govern

priority!

24

Prioritet Operator klasse Operatorer

1 (first) miscellaneous **, abs, not

2 multiplying *, /, mod, rem

3 sign +, -

4 adding +, -, &

5 Shift sll, srl, sla, sra,
rol, ror

6 relational =, /=, <, <=, >, >=, ?=,

?/=, ?<, ?<=, ?>, ?>=

7 logical And, or, nand, nor,
xor, xnor

8 (last) condition ??

Examples (elaboration on next page):
a <= a or b and c; == a <= (a or b) and c;

z <= a and not b and c; == z <= a and (not b) and c; == z <= c and (a and (not b));

y <= a and not (b and c); -- z=1 kun for a=1, b=0, c=1. y=1 for a=1 og (b eller c)=0.

VHDL operator priority

25

Examples:
x <= a or b and c; == x <= (a or b) and c;

z <= a and not b and c; == z <= a and (not b) and c; == z <= c and (a and (not b));
y <= a and not (b and c);

Try

a := ‘1’

b := ‘1’

c := ‘0’ x <= a or (b and c);

c
b
a

x

(What you might want)

x <= a or b and c;

c
b
a

x

(what you actually will get)

c
b
a

z -- z=1 only when a=1, b=0, c=1.

c
b
a

y -- y=1 when a=1, b=0 or when a=1, c=0.

26

Bit operators and reduction operator

• and, or, not, xor, xnor operators will work at bit level

when they are placed between two signals or vectors.

– y1 <= a and b; -- is equal to the lines below
y1(3) <= a(3) and b(3);

y1(2) <= a(2) and b(2);

y1(1) <= a(1) and b(1);

y1(0) <= a(0) and b(0);

• I VHDL2008 (not earlier) these operators can be used

for reduction

y <= and a ; -- is equal to the figure ->

• xor can be used this way to generate (even)

parity for a signal.

VHDL Bit String Literals

B"1111_1111_1111" -- Equivalent to the string literal
"111111111111".

X"FFF" -- Equivalent to B"1111_1111_1111".

O"777" -- Equivalent to B"111_111_111".

X"777" -- Equivalent to B"0111_0111_0111".

B"XXXX_01LH" -- Equivalent to the string literal
"XXXX01LH"

UO"27" -- Equivalent to B"010_111"

UO"2X" -- Equivalent to B"011_XXX"

SX"3W" -- Equivalent to B"0011_WWWW"

D"35" -- Equivalent to B"100011"

12UB"X1" -- Equivalent to B"0000_0000_00X1"

12SB"X1" -- Equivalent to B"XXXX_XXXX_XXX1"

12UX"F-" -- Equivalent to B"0000_1111_----"

12SX"F-" -- Equivalent to B"1111_1111_----"

12D"13" -- Equivalent to B"0000_0000_1101"

12UX"000WWW" -- Equivalent to B"WWWW_WWWW_WWWW"

12SX"FFFC00" -- Equivalent to B"1100_0000_0000"

12SX"XXXX00" -- Equivalent to B"XXXX_0000_0000"

8D"511" – Error (> 2^8)

8UO"477" – Error (>2^8)

8SX"0FF" – Error (cannot have 255 using 8 bit signed)

8SX"FXX" – Error (cannot extend beyond 8 bit)

27

Binary, Decimal, heXadecimal, Octal, Unsigned, Signed

<ant bit><U/S><B/D/O/X><numbers of type B/D/O/X >

IN3160

Code Layout (15 min)

Kilde: Ricardo Jasinski: Effective Coding with VHDL, Chapter 18

Overview

• Why bother thinking about layout?

• What constitutes a good layout scheme?

• Basic layout types

• Indentation

• Paragraphs and spaces

29

Why bother thinking of layout?

pRoCeSS(clock,reset) bEGIn iF resET then oUTpuT <="0000"; elSE IF RISING_edge

(ClOck) tHEN cASE s Is When 1=>outPUT<= "0001"; wHEn 2046=> oUTpuT <="0010";WheN
31=>OutPut<="0100";when OTHERs=>OUTput <= «1111"; end CASe; END if;END proCESS; --
Q.E.D.

30

31

A good layout scheme…

1. …accurately matches the structure of the code

2. …improves readability

3. …affords changes

4. …is consistent (few exceptions)

5. …is simple (few rules)

6. …is easy to use

7. …is economic

Basic layout types

Block layout Endline layout Column layout

32

Block layout (What you should use most of the time)

• Accurately matches structure

• relatively tidy

• readable,

• easy to maintain, etc.

33

process (clock, reset)

begin

if reset then

output <= "0000";

else if rising_edge(clock) then

case s is

when 1 => output <= "0001";

when 2046 => output <= "0010";

when 31 => output <= "0100;

when others => output <= "1111";

end case;

end if;

end process;

Endline layout (avoid this)

• Harder to maintain when code changes.

• Looks tidier, but isn’t faster than pure block

• Will get messy- poor match of code hierarchy

• Long lines..!

34

process (clock, reset)

begin

if reset then output <= "0000";

else if rising_edge(clock) then case s is

when 1 => output <= "0001";

when 2046 => output <= "0010";

when 31 => output <= "0100";

when others => output <= "1111";

end case;

end if;

end process;

Column layout (use sparingly)

• Can be easier to read than pure

block layout (scanning vertically)

• Harder to maintain.

• Best to use when columns are

unlikely to change, and statements

are related.

– Typically used for 2D arrays.

35

process (clock, reset)

begin

if reset then

output <= "0000";

else if rising_edge(clock) then

case s is

when 1 => output <= "0001";

when 2 => output <= "0010";

when 333 => output <= "0100";

when others => output <= "1111";

end case;

end if;

end process;

Indentation

• Use indentation to match code hierarchy

• 2-4 spaces has been proven most efficient

– Along with a monospace font, such as
courier, consolas..

• Use space rather than tabulator sign.

– Tabulator spaces may be interpreted

differently in different editors.

– Most editors can be set up for this.

• Example:

36

entity ent_name is

generic (

generic_declaration_1;

generic_declaration_2;

);

port(

port_declaration_1;

port_declaration_2;

);

end entity ent_name;

.

.

.
process (sensitivity_list)

declaration_1;

declaration_2;

begin

statement_1;

statement_2;

end process;

Paragraphs and comments

• Paragraphs should be

used to separate chunks

that does not need to be

read all at once.

• Paired with comments

that this make for good

readability

• Comments should be

indented as according to

the code it is referring to.

37

-- Find character in text RAM corresponding to x, y

text_ram_x := pixel_x / FONT_WIDTH;

text_ram_y := pixel_y / FONT_HEIGHT;

display_char := text_ram(text_ram_x, text_ram_y);

-- Get character bitmap from ROM

ascii_code := character’pos(display_char);

char_bitmap := FONT_ROM(ascii_code);

-- Get pixel value from character bitmap

x_offset := pixel_x mod FONT_WIDTH;

y_offset := pixel_y mod FONT_HEIGHT;

pixel := char_bitmap(x_offset)(y_offset);

Line length and wrapping

• Try to keep line length within reasonable

limits

– 80, 100 and 120 characters is widely used.

• When wrapping lines:

– break at a point that clearly shows it is

incomplete, such as
• after opening paranthesis

• after operators or commas (&, +, -, *, /)

• after keywords such as «and» or «or»

– consider one item per line…

38

-- one item/line + named association

Paddle <= update_sprite(

sprite => paddle,

sprite_x => paddle_position.x + paddle_increment.x,

sprite_y => paddle_position.x + paddle_increment.y,

raster_x => vga_raster_x,

raster_y => vga_raster_y,

sprite_enabled => true

);

-- several items/line

paddle <= update_sprite(paddle, paddle_position.x + paddle_increment.y,

paddle_position.y + paddle_increment.y, vga_raster_x, vga_raster_y, true);

Spaces

• Punctuation symbols

(comma, colon, semicolon)

– use spaces as you would in regular prose:
• Never add space before punctuation symbols

• Always add space after punctuation symbols

– no exceptions

• Parantheses

– Add a space before opening paranthesis.

– Add a space or punctuation symbol after

closing paranthesis

– Except:

• array indices and routine parameters;

• expressions.

39

-- too much
function add (addend : signed ; augend : signed) return signed ;

-- better
function add(addend: signed; augend: signed) return signed;

-- consider this expression:
a + b mod c sll d;

-- better
(a + (b mod c)) sll d;

-- consider
(-b+sqrt(b**2-4*a*c))/2*a;

-- better
(-b + sqrt(b**2 – 4*a*c)) / 2*a;

-- too much
(- b + sqrt(b ** 2 – 4 * a * c)) / 2 * a;

Naming conventions - Letter case and underscores

noconventionnaming -- don’t go there

UpperCamelCase -- OK used consequently

lowerCamelCase -- OK used consequently

snake_case or underscore_case

SCREAMING_SNAKE_CASE or ALL_CAPS

40

• Do not use ALL_CAPS too frequently.

• Use editor colors/ bold for higlighting keywords

• Try to avoid mixing snakes_andCamels.

• Treat acronyms/ abbreviations as words

– "UDPHDRFromIPPacket" vs
"UdpHdrFromIpPacket" vs
"udp_hdr_from_ip_packet"

• VHDL packages tend to favour snake_case and

ALL_CAPS

• Suggestion:

– Use snake_case for all names except

constants and generics that use ALL_CAPS

Suggested reading, Mandatory assignments

• D&H:

– 1.5 p 13-16

– 3.6 p 51-54

– 6.1 p 105-106

(Layout is lecture only)

• Oblig 1: «Design Flow»

• Oblig 2: «VHDL»

– See canvas for further instruction.

