
IN3160

Combinational logic design

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behavior and different construction

criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this part:

• Know how to create combinational logic (CL)

• What is CL and non combinational logic?

• What is hazards in CL

• How to manage hazards in CL

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

• What is combinational logic circuits

• CL vs Sequential logic

• What is and how to deal with hazards

3

(c) 2005-2012, W. J. Dally

Combinational not Combinatorial

Combinational Combinatorial

mathematics of counting

combinational logic circuit

combines inputs to generate

an output

Norsk: Kombinasjonslogikk / kombinatorisk logikk)

Varierende bruk forekommer…

I all hovedsak brukes “kombinatorisk” på norsk.

(c) 2005-2012, W. J. Dally

Combinational Logic Circuit

• Output is a function of current input

• Example – digital thermostat

C
o

m
p

a
re

Temp

Sensor 3

CurrentTemp

A

3

PresetTemp

B

A>B
FanOn

VHDL code

library IEEE;

use IEEE.std_logic_1164.all;

entity compare is

port(

current_temp : in std_logic_vector(2 downto 0);

preset_temp : in std_logic_vector(2 downto 0);

fan_on : out std_logic

);

end entity compare;

architecture combinational of compare is

-- declarations (none)

begin

-- statements

fan_on <= '1' when (current_temp > preset_temp) else '0';

end architecture;

C
o

m
p

a
re

Temp

Sensor 3

CurrentTemp

A

3

PresetTemp

B

A>B
FanOn

(c) 2005-2012, W. J. Dally

Sequential logic circuit

• Includes state (memory, storage)

• Makes output a function of history

as well as current inputs

• Synchronous sequential logic

uses a clock

• Example: calendar circuit

– (1 clock / day...)

– Compute is CL

– Register stores state

R
e

g
is

te
r 4

TodayMonth

5

TodayDoM

3

TodayDoW

Clock

C
o

m
p

u
te

T
o

m
o

rr
o

w

TomorrowMonth

4

TomorrowDoM

5

TomorrowDoW

3

Combinational vs sequential code example

COMBINATIONAL: process (all) is

begin

z <= ‘0’;
if b then

z <= a;

end if;

end process;

-- «all» can be replaced by b here

SEQUENTIAL: process (clk) is

begin

if rising_edge(clk) then

z <= ‘0’;
if b then

z <= a;

end if;

end if;

end process;

-- quite often we have both reset and clk

NOTE:

Using IF, we get latches unless all options are covered.

Here: z<=‘0’ (default value) solves this issue.

Using ‘else’ is another option

-- concurrent statement is more compact...

z<= a when b else '0';

D Q

a

 0 0

1

b clk

z

a

 0 0

1

b

z

(c) 2005-2012, W. J. Dally

CL

i
1

i
n

o
1

o
m

CL
i

n

o

m

o = f(i)

Combinational logic is memoryless

(c) 2005-2012, W. J. Dally

Can compose digital circuits

Thermostat

Calendar

=

TodayDoW

Sunday

ItsSunday

TempHigh

ItsNotSunday
FanOn

NOT AND

• Combinational logic circuits are closed under acyclic composition.

• Ie. As long as there are no loops:

– A module of modules of combinational logic is combinational

(c) 2005-2012, W. J. Dally

Closure

CL1

CL2

CL12

(c) 2005-2012, W. J. Dally

CL
CL

a

b

c

o

YES

CL

CL

a

b

NO

Non CL example :

• Can be hard to spot in

dataflow code

• => Use high level code for

readability (& modifiability)

architecture data_flow of D_flipflop is

signal e, f, g, h, i, j, k, l: std_logic;

begin

-- concurrent statements

e <= not (D and clk);

f <= not (e and clk);

g <= not (e and h);

h <= not (f and g);

i <= not (g and not clk);

j <= not (h and not clk);

k <= not (l and i);

l <= not (k and j);

Q <= k;

end architecture data_flow;

Hazards in combinatorial design

• Definition of hazard in a combinational circuit:

– Output goes through an (unwanted) intermediate state when input changes

– e.g.

– With several inputs, there can be several unwanted transitions

• It doesn’t have to be 0 1 0, it can be X->Y->Z or X->Y1->…-> Yn-> Z 14

xk

f

xother unchanged
Combinational

logic

xn

...

x0 f

Hazards in combinatorial design

• Ex: f(a,b,c) = (aΛc) V (bΛc’)

f <= (a and c) or (b and not c);

• a = ‘1’, b = ‘1’, c changes from ‘1’ to ‘0’

• f goes from 1 to 0 to 1

(the inverted input of the second and-gate..)

• Possible solutions: (next page)

15

a

b

c

f

a

b

c

f

a

b

c

f

a

b

c

f

Solutions

• 1: add registers… (we’ll get back to this one in oblig 8)

– This is what we normally do..

– Left => stable input

– Right => stable output

• 2: Manually design a solution

– D&H goes through that process

– Laboriuos process: not a topic for this course

• 3: (Use high level code!)

– may not solve every possible issue, but

– will not induce issues if the syntheziser is capable

– Synthesizing for FPGAs, = LUTs (problem occurs first at > 4 inputs)
16

a

b

c

f

→Combinational

logic

x n

...

x 0 f Combinational

logic

x n

...

x 0 fD

CLK

Q
D

CLK

Q

Designer vs tool- example

• F(d,c,b,a) is true if input d,c,b,a is prime

17

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0


dcba

mf)13,11,7,5,3,2,1(

(c) 2005-2012 W. J. Dally

Schematic Logic Diagram


dcba

mf)13,11,7,5,3,2,1(

d c b a

f

1

2

3

5

7

11

13



Equation:

Schematic Logic Diagram:

Manual optimization

• Minimalistic and Hazard free implementations can be found

using implicant cubes and Karnaugh diagrams

• Method is laborious and can normally be avoided.

• D&H covers this in 6.4-6.9, we will not go in-depth.

19

0001

0011

1011

0101

0111

0010

1101


dcba

mf)13,11,7,5,3,2,1(

0
0

0
1

1
1

1
0

a

b

d

0

0

0

0

0 0

1

1 1

1 1

1 0 0

1 0

ba

dc 00 01 11 10

Code will have to be written as a dataflow

or structural design.

VHDL that implement the prime function (F)

• Note that these do not necessarily address any hazard issue.

VHDL Solution using case

library IEEE;

use IEEE.std_logic_1164.all;

entity prime is

port(

input: in std_logic_vector(3 downto 0);

isprime: out std_logic

);

end entity prime;

architecture case_impl of prime is begin

process(input) begin
case input is
when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d" => isprime <= '1';
when others => isprime <= '0';

end case;
end process;

end case_impl;

The vertical bar ‘|’

can be used to list multiple choices


dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

library ... (same as previous slide)

entity ...

architecture mcase_impl of prime is

begin

process(all) begin

case? input is

when "0--1" => isprime <= '1';
when "0010" => isprime <= '1';
when "1011" => isprime <= '1';
when "1101" => isprime <= '1';
when others => isprime <= '0';

end case?;

end process;

end mcase_impl;

Solution using «Matching case» = case?

Matching case can be used with ‘-’

(‘-’ = don’t-care bit)

Note:

Each option should only be listed once


dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

More on case and case? «matching case»

• Case requires all possible

outcomes to be defined

– «when others»

• Will cover other outcomes, but may also

cover errors

– Ie: we added a subtype to a type, and

should extend a case…

• If you have many options that do

the same

– Use «matching case» case?

• Allowes for don’t cares to cover options

with the same outcome.

type holiday is (Xmas, easter, summer);

signal min_holiday: holiday;

type temperature is (freezing, cold, mild, warm);

signal weather : temperature;

...

case my_holiday is

when Xmas => weather <= freezing;

when easter => weather <= cold;

when others => weather <= warm;

end case;

-- add ‘autumn’ to holiday type…

-- will compilation bug you?

-- should autumn be considered warm..?

Solutions using concurrent signal assignment

Which one would you prefer reading?

architecture selected of prime is

begin

with input select isprime <=

‘1’ when x"1" | x"2" | x"3" | x"5" |x"7" | d"11" | x"d",

‘0’ when others;

end architecture selected;

architecture dataflow of prime is

begin

isprime <=

(input(0) and (not input(3))) or

(input(1) and (not input(2)) and (not input(3))) or

(input(0) and (not input(1)) and input(2)) or

(input(0) and input(1) and not input(2));

end architecture dataflow;


dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

👍👍👍

👎
Avoid pure dataflow unless

strictly necessary

Selected statements will not infer

latches unless explicitly designed

for that purpose

Suggested reading

Combinational logic

• D&H

– 3.6

– 6.1, 6.2, 6.3 (p105-109)

– (6.4-6.9 p110- 120 .. Not syllabus)

– 6.10 p121-123

– 7.1 p 129-143

–

25

(VHDL-structure)

• D&H:

– 1.5 p 13-16

– 3.6 p 51-54

– 6.1 p 105-106

IN3160, IN4160

Verification part 1

Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Know what we mean by ‘verification’ and ‘test’
• Functional verification

• Formal verification

• Compilation

• Simulation

• Coverage

• Know how to perform verification
• Manual stimuli

• Script based stimuli

• Test benches

• Know basic simulation principles for digital systems

• Know how event based simulation works

• Know the difference between event based and cycle based

simulation.

• Know how basic VHDL structures will be simulated

• Compilation steps

• Process sensitivity list

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

• What is- & Why verification

• Verification vs Testing

• Coverage

• Compilation

• Simulation
– Types

• RTL (functional)

• Timing
– Static timing analysis

– dynamic

– Execution
• Cycle based

• Event based

- Assignments and suggested reading

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Verification vs. Testing..

We can design for testing-

but when we start testing,

- we should already know that the design works

Verification Testing

Ensures that the design meets the specification Ensures that one particular device actually works-

has no faulty gates or other production errors

Is done throughout the design process Is performed after manufacturing process

- Before shipping the product to the customer

Consists of tests that ensure that the design works

• Logically

• Compilation

• RTL simulation

• Timing

• Static timing analysis

• Timing simulation

Consists of tests that each product works

• Electrical tests

• Built in self tests

• At start up or user initiated

• RAM tests etc.

What is verification?

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

• Compilation

– Ensures that the code can be implemented.

• Formal verification

– To prove that a module has a certain function

• Mathematical equivalence (requires mathematical proof)

• Model check: Checks the state space of a system to test if certain assertions are true

– = Check if we can set the system in invalid states...

• Functional verification

– To verify that the code behaves as intended

– RTL simulation

• Checks that the code provides correct output

– Gate level simulation (Post synthesis simulation)

• Simple timing tests (fast)

– Timing simulation (Post PAR simulation)

• Static timing analysis

– Critical path analysis

• Check that we meet setup and hold requirements from interacting devices.

– Bus functional models, BFM
• Check that our device can communicate correctly on a bus

• Can provide both input and provide response for “other devices” on a bus

• IP or self made…

Coverage

• Will we be able to cover all states and possibilities for our design?

– Likely not.

• A formal verification process may ensure this, but is usually not possible.

• Specification coverage

– What is the proportion of the specification that we test?

• 100% of features usually is the goal

• Code coverage

– Usually all our code lines should be tested.

• If not- do you really need that code…?

• Test patterns (Data coverage)

– 100% never possible (e.g. 64 bit adder 2^128 possible patterns…)

– Special cases

– Randomized tests

Compilation: Analysis and Elaboration

• Analysis

– The compiler reads all the files, check syntax, semantics

– Compiled result is

• translated to an intermediate representation

• stored in (work) library

• Elaboration (requires error free analysis)

– Creates design hierarchy

• Instantiates entities

• Creates connections

– Checks that types does match for connected signals

RTL simulation practical example

• Modelsim / Questa:

– Creating test vectors and visualizing data

– Example: (xor.vhd)

• Manually

• Using Scripts (TCL) (sim-demo.tcl)

– Creating test benches

• Example (tb_xor.vhd)

library IEEE;

use IEEE.std_logic_1164.all;

entity X_OR is

generic(WIDTH : natural := 2);

port(

input : in std_logic_vector(WIDTH-1 downto 0);

output : out std_logic

);

end entity X_OR;

architecture my_arch of X_OR is

begin

output <= XOR(input);

end architecture my_arch;

Testbench example

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity tb_xor is

-- Empty entity of the testbench

end entity tb_xor;

architecture behavioral of tb_xor is

component X_OR is

generic(WIDTH : natural);

port(

input : in std_logic_vector(width-1 downto 0);

output : out std_logic

);

end component;

signal a, b, c : std_logic;

signal d : std_logic_vector(4 downto 0);

signal e : std_logic;

begin

TEST_UNIT_1 : x_or

generic map(

WIDTH => 2 -- 2 port XOR

)port map(

input(0) => a,

input(1) => b,

output => c

);

TEST_UNIT_2 : x_or

generic map(

WIDTH => 5 -- 5 port XOR

)port map(

input => d,

output => e

);

-- generate test vectors --

main: process is

variable abd: std_logic_vector(d'range);
begin

wait for 1 ns;

for i in 0 to 24 loop

abd := std_logic_vector(to_unsigned(i, abd'left+1));

d <= abd;

a <= abd(0);

b <= abd(1);

wait for 1 ns;

assert (e = c) report

("e differs from c for input = " & integer'image(i))

severity error;

-- assert (e = xor(d)) report("e is not the even parity

of d for " & integer'image(i)) severity error;

end loop;

report ("TESTING FINISHED!");

std.env.stop;

end process;

end architecture behavioral;

VHDL Testbench

• Making stimuli/test surroundings in VHDL

• Very powerful possibilities in the simulation

– File I/O

• Reading test patterns from file

• Writing results to file and compare it to a file with the

correct answers

• The file with the correct answers can also be read, and

comparison between the result and the blueprint can be

executed in the testbench

– Can build in modules for surrounding circuits

• Especially important if we have a two-way

communication between UUT (Unit Under Test) and

surrounding circuits (Handshake signals)

• Gives simulator independent testbench.
35

In the conceptual
review

While coding

When compiling

When simulating

During testing

By the customer

In the design phase

M
y

er
ro

rs
 w

ill
 b

e
fo

u
n

d
...

Testbench

• In a test bench you can

– include other modules (that

are more or less verified),

– or provide data for one unit

at a time.

• Often we rely on simulation

models created by others.

– Bus functional models etc.

36

VHDL Testbenches

• Libraries

• Empty entity (can have generics, but no IO)

• Component declaration for each entity that is a part of the test

• Signals for all ports we would like to manipulate

• Component instantiation

– («DUT» is likely the module we would like to test)

• One or more processes that

– set input test vectors at specific time intervals

– evaluates output vectors

– reports findings and results to screen or file.

Simulation types

• Cycle based

• Event based

– The norm We will elaborate on these..

Cycle based simulation

• Uses no notion of time within a single clock cycle

• Only evaluate boolean functions for each component once

• Is very fast, but can produce simulation errors

• Not widely used, but can be used in some parts of designs with high simulation times

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

39

Clock

Data In

Registers Registers RegistersCombinatorial

Logic

Combinatorial

Logic

etc.

Event driven simulation

• «event driven» => time is driven by events

– Change in inputs (stimuli)

– Change in outputs that propagate to other changes

• All signal drivers are modelled with a delay called «delta delay»

– A delta delay is a delay of 0 time-

• a mechanism for queuing of events

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

40

Event queues and delta delay

• All elements in the circuit to the right have zero delay

• Zero delays are modelled as delta delays

– All events generated at current simulation time are

scheduled a single delta delay later

• Use of delta delay makes sure all simulators gives

the same result

• Use of delta delays require constant updates and

insertions of new events into the event queue

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

41

Event queues and delta delay example

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

42

Simulation of VHDL models

• The time datatype is defined in std.vhd

• The function now returns current simulation time

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

43

Implementation

specific

VHDL simulation cycle I

• VHDL simulation has two phases:

– Initialization phase

– Repeating execution of the simulation cycle

• Simulation starts at time 0

• Current simulation time, Tc

• Next simulation time, Tn

• Tn is calculated from the earliest occurrence of:

– TIME’high (max simulation time)

– Next time a driver is activated

– Next time a process starts (continues)
INF3430 / INF4431

Simulation methodology – Simulation of VHDL models
44

VHDL simulation cycle II

• It is assumed that all signals have had their value forever at the

start of simulation

– Signals are initialized to ‘U’ (undefined) until otherwise specified.

• Each simulation cycle is executed by:

– Tc is set to Tn

– All explicit assignments (input stimuli) and all implicit signals are updated.

Both of these can cause new events, either a delta delay ahead or at

another time.

– If Tn = Tc, then a delta cycle is the next cycle

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

45

VHDL processes

• Process sensitivity

– Decides when a process is invoked in simulation

– «SHOULD not» interfer with how HW is made…

• Do not trust this..!

– Good practice:
• Use keyword all for combinational logic

• Use clock (and reset when asynchronous) for sequential logic.

Simulation specific code (Non synthesis)

• Assertions (will be ignored by synthesis tools)

– Can be used to create error messages and notifications based on results

– Ex: assert (e = c) report("e differs from c") severity error

• Read «assert» as «if not <boolean expression> then» [report…]

• Wait for <time> (will be ignored by synthesis tools)

• Warning..:

– «wait for / wait on <signal>» can be used in synthesizable code

• Makes sequential (latched or flip-flopped) logic.

• Better: use the IEEE1164 keyword «rising_edge» or «falling_edge» to ensure operation

Suggested reading, Corresponding assignments

• D&H:

– 2.1.4 p 27

– 7.2 p 143-148

– 7.3 p 148-153

– 20.1 p 453 – 456

• Oblig 1: «Design Flow»

– See canvas for further instruction.

• Oblig 2: «VHDL»

Note: …

