| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

IN 3160, IN4160

VHDL conditional statements and loops
Yngve Hafting

UiO ¢ Department of Informatics
University of Oslo

Messages

* Implement? Remote access:

— Oblig 1 — https://robin.wiki.ifi.uio.no/Remote_access
— 4 PCs, same setup as LISP + camera

* yes
— Oblig 2
* yes
« Demonstrate / show lab supervisor?
— Yes:
« Simplifies approval and feedback process

— If not possible...

* Video -> filesender. Can be used to show the same
— Feedback in canvas only

01.02.2022 3

https://robin.wiki.ifi.uio.no/Remote_access

Ui0: Department of Informatics Coyrse Goals and Learning Outcome

University of Oslo _ _ o _
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
In this course you will learn about the design of Goals for this lesson:
advanced digital systems. This includes « Know the basic structure and function of
programmable logic circuits, a hardware design widely used combinational structures.
language and system-on-chip design (processor, « how to implement these structures using VHDL
memory and logic on a chip). Lab assignments - If, case, when-else, select
provide practical experience in how real design can * Loops
be made. » Type casting
» Shift operators
Dataflow vs RTL descriptions
After completion of the course you will: « Know how to generate complex structures
« understand important principles for design and in VHDL
testing of digital systems * generate

* understand the relationship between
behaviour and different construction criteria

 be ableto describe advanced digital systems
at different levels of detail

* be ableto perform simulation and synthesis of
digital systems.

01.02.2022 4

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Section overview

* VHDL: Next lesson: Building blocks
— Sensitivity list Decoders vs encoders
. : Decoder
— Signals and variables example Multiplexer
— If, case, when-else, select Encoders
— Loops Arbiters
— Structural coding Shifters
« Generate Comparators
- Generics ROM

RAM

01.02.2022 5

UiO ¢ Department of Informatics

i;:r;gE?EiiiLDGIC_J.lE& JALL: Sen S i t i V i ty I i St
entity My thing is What happens Wlth F?

port(i: in S5TD LOGIC: (A ‘A
F: out STD LOGIC Assume a changes from ‘0’ to ‘1

)y :

end entity My thing: signal_update: process(a,b)
begin
if a = "1" then
architecture Behavioral of My thing is b o= T
signal b : STD LOGIC: -
begin else
signal update: process(a) b <= '07;
begin end if;
if o ="_" th == "_"; .
! =t if b = "1" then
else b <= "CO';
f <= 7
end if; ’
else
ifb="_" then F <= "_"; f <= '0°';
glse F <= "0'; end if;
end if;

end process;

end process;

end architecture Behavioral:

& /my_thing/A

UiO ¢ Department of Informatics
University of Oslo signal var update : process(clk)

variable c : std logic;

. . begin
S|gnaIS VS. Varlables if rising_edge(clk) then
(sequential logic example) e e
- Exercise: e T
« Assume all signals are 0, then b <= 0";
. = '0";
— signal a changes from O to 1. endcif;
if b = '1l' then
. f<="'1";
* On which clock cycles does f else
and g change value; first, £ <= 10Y
. end if;
second, third? if o — '1' then
g <= "'1l";
else
g <="'0";
. . ; end if;
Try for 1 minute, answers can be written in chat... end if;

end process;

Time’s up...

UiO ¢ Department of Informatics
University of Oslo

a — \ b —
} D Q D Q— f
lll l1l

CLK CLK

«C» D Q_ g

— CLK

NOTE: c could be assigned multiple places in the process.

How would that affect the diagram..?

Variables update «immediately»
Signals are assigned «where» the process ends
when the process statement updates as a whole

signal_var update :
process (clk)

variable c : std logic;

begin
if rising edge(clk) then
if a = '1l' then
b <= "'1";
c :="'1";
else
b <= '0";
c = "'0";
end if;
if\b = '1' then
f <= "1";
else
f <= "'0";
end if;
if ¢ = '1l' then
g <= "'1";
else
g <= "'0";
end if;
end if;

end process;

UiO ¢ Department of Informatics signal var_ update
University of Oslo process (clk)

variable c : std logic;

begin
DlgreSS|On if rising edge (clk) then
if a = '1l' then
b <= "'1";
« Simplified... c i= '17;
else
signal_var update : b <= "'0";
process (clk) c 1= '0"';
: D Q b D Q— f variable c : std logic; end if;
) begin if b = 'l' then
if rising_edge (clk) then £ <= "1";
CLK CLK b 2= a; else
c = a; £ <= 10';
f <=Db; end if;
«e» DR md e
end if; g <= 1
end process; else
g <= "'0";
end if;
end if;

end process;
01.02.2022 9

UiO ¢ Department of Informatics
University of Oslo

Default values in processes

architecture Sequential? of priority is
begin
process (a) is
begin
Qalid <= '123
if a{3)="1" then
y <= "1l1";
elzif a{(Z)="1" then
y <= "10";
elsif a(l)="1" then
y <= "01";
el=zif a{(l)="1" then
y <= "00";
el=se
wvalid <= "0 ;
y <= "0o0";
end if;

end process;
end architecture Sequential?;

Ensures we always have an output value
(avoiding latches).

Be reasonable with use of “default” values
in a process
— Does only change where it's necessary

— This works because processes are compiled
sequentially...

The last assignment within the process will take
precedence

— Don’t bury default values within nested ifs...
Readability and maintainability suffer if you do..

Default values are commonly used for state
machine outputs

— typically active in one state only...

10

UiO ¢ Department of Informatics
University 0f OSI0 e EEEEE e e .

: Rule of thumb:
: » Signal for all registers (FFs)

Sl g n al S an d Var| ab I eS "out is a signal that can be read outside the entity”

+ Signals and variables can be used to hold data : «when others»:

« Signals : »+ use variable if possible...

— A signal can be used within the whole architecture
— Connect to other architectures through the entity ports
— Changes value when a process terminates in simulation

« Variables
— Variables are declared and only used locally within a process (function or
procedure)
— Assigned using =" (Ex: var := ‘1’;)

— Unlike a signal the variable changes value immediately in simulation
* Immediately = based on position
 can hold multiple values within one process.
— Variables are useful to keep intermediate results in algorithms
» Subprograms initialize variables every run.
» Process variables initialize once, when simulation starts

11

UiO ¢ Department of Informatics
University of Oslo

If and case in VHDL Processes

« |If and case are used much like in
other programming languages like C,
Java etc.

— In if-tests we can test on different

signals/variables
« if-tests have a built in priority
— In case-tests we are only testing in one
signal (with one or more bit)

* No built in priority because the same signal
are being used everywhere in the test

12

UiO ¢ Department of Informatics
University of Oslo

If « Must be in process

« Multiple conditions
* Multiple targets

* prioritizes

 First option has priority
— (think of two-input multiplexers)
« Can be used to infer latches and Flipflops

— FF when edge triggered (rising_edge)
— Latch when not sufficiently specified
* This is a trap, avoid this!
« Can be nested using «elsif»
— And replace case statements...
— Consider using case...
* Avoid deep nesting
— 4 degrees should be maximum...

01.02.2022

13

UiO ¢ Department of Informatics
University of Oslo

process (all) is
begin
if inpl then
if inp2 then

If example (all input specified):

o | e | o | b
1 1 1 1
b <= "1"'

0 else
a <= "1"
b <= "0'
end if;
else

Latched

Latched

a<="'0"
end if;
end process;

Always specify all outputs for all conditions of inputs!

01.02.2022

process (all) is

begin
if inpl then
a<="1";
b <= inp2;
else
a<="'0";
-- b ass. missing
end if;

end process;

14

UiO ¢ Department of Informatics
University of Oslo

If../case..

— OUTPUT

entity My thing is !
port(h,B,J,K,L: in 5TD LOGIC;
CUTPUT: out STD LOGIC):
end entity My thing; K'__
architecture prioritized of My thing is
begin
process(all) L —]
begin
if 2 ="' then
CUTPUT <= J;
elzsif E = '.' then
CUTPUT <= K: A
else
CUTPUT <= L;
end if;

end process;
end architecture prioritized;

entity My thing is
port(Z : in 5TD LOGIC VECTOR(
J,E,L: in 5TD LOGIC;
OUTPFUT: out S5TD _LOGIC) ; K
end entity My thing;

downto

architecture nonpri of My thing is

begin L
case A is
when "017" =>
CUTPUT <= J;
when "10" ==

CUTPEUT <= E:
when others =>
CUTPUT <= L;
end case;
end architectuore nonpri:

— OUTPUT

15

UiO ¢ Department of Informatics

University of Oslo

If nesting vs. chaining (using elsif)

process (all) is
begin
if (input = "1") then
isprime <= '1';
else
if (input = "2") then
isprime <= '1';
else
if (input = "3") then

isprime <= ;
end if;
end if;
else isprime <= '0';
end if;
end process;

01.02.2022

process (all) is
begin
if (input =
elsif (input
elsif (input

"1")

else isprime <=

end if;
end process;

then isprime <=

"2")
H3H>

then isprime <=
then isprime <=

16

UiO ¢ Department of Informatics
University of Oslo

If nesting for priority — danger zone

Sometimes it can make sense to use nesting

- clocked processes and state machines E:;<i=355<311> is
if (inpl = a) then
« Itis easy infer latches if_f<ifzf_>2 oY)th:
. . i inp3 = cC en
* When not all input options are covered <statement 1>
« When some output is not covered for all options Sstarement 2>
else
<statement 3>
Consider other options when creating CL end if;
H HH end if;
- iImprove r_eadablllty ee
- Reduce risk for latches <statement 4>
end if;

end process;

- It is OK to nest other statements within if...
- select ...
- when ... else
- case ...

01.02.2022

UiO ¢ Department of Informatics
University of Oslo

Example

library ieee;
use leece.std logic 1164.all;

entity latches is

port(
invec : in std logic vector(l downto 0);
outvec : out std logic vector (3 downto 0);
input : in std logic;

outl, out2 : out std logic
)
end entity latches;

« Nesting if-statements will
conceal these errors easily,
thus providing an endless
source of errors

01.02.2022

architecture poor of latches is
begin

-— if invec = "11" => outvec is latched
missing input: process(all) is
begin
if invec = "00" then
outvec <= "0000";
elsif invec = "01" then
outvec <= "1110";
elsif invec = "10" then
outvec <= "0110";
end if;

end process;

-— 1f input='1l' then out2 is latched.
-— 1f input='0' then outl is latched.
missing output: process(all) is

begin
if input then
outl <= '1"';
else
out2 <= '0';
end if;

end process;

end architecture poor;

18

UiO ¢ Department of Informatics
University of Oslo

Case

» Must be in process
* single input vector
* Multiple targets

« Every alternative has same priority

« Every option for input must be declared

- ‘when others’ can be used
* be wary of changes in input type...

— Can infer latches too...

* When not defining all outputs for all inputs

Matching case- «case?»
— Allowes for don’t care’s

01.02.2022

process (input) is
begin

case input is

when ann ‘ XH2H | X"3" | XH5H | XH7H ‘ann ‘ x"d"

isprime <= '1'
when others => isprime <= '0'
end case;

end process;

The typical use-case for case is
state machines.

Case is excellent when you want to
set several output vectors
depending on one state vector.

19

UiO ¢ Department of Informatics
University of Oslo

Case creating latches:

process (input) is

begin
Default values can be a isprime <= '0';
isfour <= '0';

good solution when using
case statements.

case input is

when x"1" I x"on I XH3H I XH5H I x"7"

isprime <= '1';
‘null’ statement should ———
only be used in CL when when x"4t =>
using default values for alll E—

isfour <= '1';

outputs. when others =>

null;

= latch inferred

end case;
end process;

01.02.2022

X

"b"

I X"d"

=>

20

UiO ¢ Department of Informatics
University of Oslo

When ... else

« Can be used concurrently
(outside processes). isprime <=
. .. '1' when input = x"1" else
« Multiple conditions '1' when input = x"2" else
. '1' when input = x"3" else
» Single target '1' when input = x"5" else
. e '1' when input = x"7" else
* pI’IOrItIZGS '1' when input = x"b" else
'l' when input = x"d" else
« Can replace if statements for single target
s Can |nfer FF,S/IatCheS g <= '0' when reset else 'd' when rising edge (clk);
a <= b when en;
- Compact M always keep ‘else’ in mind...

— Suitable when complexity is low

01.02.2022 21

UiO ¢ Department of Informatics
University of Oslo

With ... select

« Can be used concurrently with input select isprime <=
l when X"l" | X"2H | X"3" | X"5" | XH7H | X"b" |
 single input vector |07 when others;

« Single target
— Must have all input cases defined

e« Can also infer latches

— Least ||ke|y with a select g <=
16d"1" when 16d"1",
» Feedback obvious@ 16d"4" when 16d4"2",

16d"8" when 164"3",
g when others;

« Compact and readable

01.02.2022 22

UiO ¢ Department of Informatics
University of Oslo

If, case, when ... else, with select - summary
* Whenin doubt...

— Try ‘with..select’

o o] Multiple Multiple Required
+ This will force you to make visible choices.
case Multiple Single Required
when .. else Single Multiple Optional
* Onlyuse ‘if’... with .. select Single Single Optional
— When you need to prioritize conditions...
— and have multiple targets
» Typically used for clocked processes.
* ltisfineto use select.. or when/else inside if and case
— Do you need if inside if?.. Whatever you (.?hOC.)SG, _
_ Case inside case? .. keep the following in mind:
— Readability suffers when nesting several levels of if or case define
 all outputs for
 all conditions

23

UiO ¢ Department of Informatics
University of Oslo

Loops in VHDL

« Both simulation and synthesizable code

* Three types
— Simple loop- until exit
— While- loop condition is true

— For loop
+ Counted

— Numbers or elements/ ‘range
» Loop parameter static

— Can be increased using ‘next’
— ‘next when <condition>’

 ‘exit’+(optional loop label)
— Can be used in all loops

— Innermost loop is default
— Nested loops: use label

01.02.2022

--SIMPLE LOOP--
variable i: integer :

loop

statements;
i:=1i+

exit when i =
end loop

--WHILE LOOP--
variable i: integer : ;

while i < loop
statements;
i =14+ 1;

end loop

-—-FOR LOOP--

for i in to loop
statements;

end loop;

--FOR LOOP2—
type frukt type is (eple, pare, banan);

frukt loop: for f in loop
statements;
when <conditionl> next frukt loop;
when <condition2> exit frukt:loop;
end loop;

24

UiO ¢ Department of Informatics
University of Oslo

Entity/architecture

« Entity and architecture are the two
most fundamental building blocks in
VHDL

« Entity
— Connection to the surroundings

— Port description
 Input/output/bi-directional signals

* Architecture
— Describes behavior
— An entity can have many architectures

— Can be used to describe the circuit on

several levels of abstraction:
* Behavioral (for simulation)
* RTL (Register Transfer Level)
+ Dataflow
» Structural
— Post synthesis (netlist)
— Post Place & Route (netlist + timing)

““ mm rION ! 1

entity My thing is

generic(width: integer = Z)
port(INA, INE : in 3TD LOGIC:
INC : in 5TD LOGIC VECTOR(width-1 downto O):
OUT1l: out STD LOGIC:
CUTZ: omt 5TD LOGIC VECTOR(width/Z - 1 downto
y:
end entity My thing:
na ENTITY
OuTl—
— INB
OUT 2 mm
-1 INC

25

)

UiO ¢ Department of Informatics
University of Oslo

Generics

» In addition to the port description an
entity can have a generic description

» (Generics can be used to make
parameterized components (generic)

— can be used for structural information
* both synthesis and simulation

— can be used for timing information
+ for simulation only

— Example 1:

* Time delay can vary between circuits, but the
behavior is the same

— Example 2:

* The number of bits can vary between circuits,
but the behavior is the same

DELAY_LENGTH is a subtype of the type time
from the predefined (alwayvs in use) package “std”

24:
25:
26:
27 :
28:
20:
30:
31:
32:

entity AndZ is

generic (delay : DELAY LENGTH :=

port (x, y : in BIT; z: out BIT);

end entity And2;

architecture ex2 of And2 is
begin

z <= x and y after delay;
end architecture ex2;

architecture Structural of My th 1is

component AndZ
port{ x,v : in EBIT:
end component:
=ignal a,b,c : EIT:
begin
MY COMP1l: AndZ
generic map (delay =»>
port map (x==a, v=xb,
end architecture Structural;

=

ont

us=}) ;
Z==C)

10

o T

L i W

26

ns) ;

r

UiO ¢ Department of Informatics
University of Oslo

Structural design

Component A Component B
Inputs Instans Ul Instans U2

=1

sammenkoblinger

Component C Component A
Instans U3 Instans U4 | Outputs

« Every Component instance has an underlying Entity/architecture pair
« We can easily re-use «entities»

* We can make a hierarchic design with as many levels we want
— Try keep design hierarchy manageabile...

UiO ¢ Department of Informatics

University of Oslo

Structural design I I
Reuse of modules (entities and architectures) ENTITY :["
Generic modules (generics) 1 il I - :__
— For example scalable bus widths |
— Configurable functionality :
Breaking up big designs to smaller and more — Nm ouTaf— | |
manageable building blocks | :——

I

— Think functional blocks

— Connection of functional blocks
(entities/components/modules)

Easier to collaborate within a design team
— Well defined interface between modules

Any entity-/architecture pair can be used as a
building block in a structural description

— Pairing of components

28

UiO ¢ Department of Informatics

25:
26:
27:
28:
29;
30:
31:
32:
33:
34.:
35:
36:
37:
38:
39:;
40:
41 :
42 :
43:
44
45:
46:

University of Oslo

Structural design (netlist)

architecture netlist?2 of cnmb_functiﬂn is
component And2 is
port (x, v : in BIT; z: out BIT);
end component And2;

component Or2 is
port (x, ¥ : in BIT; 2z: out BIT);
end component Or2;

component Notl is
port (x : in BIT; z: out BIT);
end component Notl;

signal p, q, r : BIT;

begin
gl: Notl port map (a, p);
gd: And? port map (p, b, q);
g3: And? port map (a, o, r);
gd: Or2 port map (q, r, z);

end architecture netlist2;

A netlist is a description of
components used, and their
connections

— Synthesizing is creating a netlist

using the available primitives for a
(PL/ASIC) device.

— The top level in larger designs is
often purely structural, although
with design elements and not
device primitives

« Here we pick up the entities from
the «working» library

« The last compiled architecture are
being used
« Port mapping:
— «Association» can be done by position
— named association is less error prone.
(ex: gl: Notl port map (x =>a, z=>p);) .

UiO ¢ Department of Informatics
University of Oslo

Structural design with generate statement

® generate IS can bUIId multlple bidir bus inst: for 1 in to generate

buft inst: buft port map (data(i),en,din(1)};

components in a small |00p_ ibuf_inst: ibuf port map (dint(i),data(i));
end generate;
— Requires indexable parameters

In connected signals diniD) datal0)
T . din(1) | [™~._data(1)
« Example: Bidirectional bus

Db

din(15) data(15)

dint(15) _—

|

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

« D&H 7.1- 7.3 p129-153

