
IN 3160, IN4160

VHDL conditional statements and loops

Yngve Hafting

Messages

• Implement?

– Oblig 1
• yes

– Oblig 2
• yes

• Demonstrate / show lab supervisor?

– Yes:
• Simplifies approval and feedback process

– If not possible…
• Video -> filesender. Can be used to show the same

– Feedback in canvas only

– …

01.02.2022 3

• Remote access:
– https://robin.wiki.ifi.uio.no/Remote_access

– 4 PCs, same setup as LISP + camera

https://robin.wiki.ifi.uio.no/Remote_access

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design (processor,

memory and logic on a chip). Lab assignments

provide practical experience in how real design can

be made.

After completion of the course you will:

• understand important principles for design and

testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital systems

at different levels of detail

• be able to perform simulation and synthesis of

digital systems.

Goals for this lesson:

• Know the basic structure and function of

widely used combinational structures.

• how to implement these structures using VHDL

• If, case, when-else, select

• Loops

• Type casting

• Shift operators

• Dataflow vs RTL descriptions

• Know how to generate complex structures

in VHDL

• generate

01.02.2022 4

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Section overview

• VHDL:

– Sensitivity list

– Signals and variables example

– If, case, when-else, select

– Loops

– Structural coding

• Generate

• Generics

01.02.2022 5

Next lesson: Building blocks
Decoders vs encoders

Decoder

Multiplexer

Encoders

Arbiters

Shifters

Comparators

ROM

RAM

Sensitivity list

What happens with F?

6

Assume a changes from ‘0’ to ‘1’

Signals vs. variables

(sequential logic example)

• Exercise:

• Assume all signals are 0, then

– signal a changes from 0 to 1.

• On which clock cycles does f

and g change value; first,

second, third?

7

Try for 1 minute, answers can be written in chat...

signal_var_update : process(clk)

variable c : std_logic;

begin

if rising_edge(clk) then

if a = '1' then

b <= '1';

c := '1';

else

b <= '0';

c := '0';

end if;

if b = '1' then

f <= '1';

else

f <= '0';

end if;

if c = '1' then

g <= '1';

else

g <= '0';

end if;

end if;

end process;
50 40 30 20 10Time’s up...

8

signal_var_update :

process(clk)

variable c : std_logic;

begin

if rising_edge(clk) then

if a = '1' then

b <= '1';

c := '1';

else

b <= '0';

c := '0';

end if;

if b = '1' then

f <= '1';

else

f <= '0';

end if;

if c = '1' then

g <= '1';

else

g <= '0';

end if;

end if;

end process;

D

CLK

Q
a b

fD

CLK

Q

D

CLK

Q g«c»

‘1’‘1’

NOTE: c could be assigned multiple places in the process.

How would that affect the diagram..?

Variables update «immediately»

Signals are assigned «where» the process ends

when the process statement updates as a whole

Digression:

• Simplified...

01.02.2022 9

signal_var_update :

process(clk)

variable c : std_logic;

begin

if rising_edge(clk) then

if a = '1' then

b <= '1';

c := '1';

else

b <= '0';

c := '0';

end if;

if b = '1' then

f <= '1';

else

f <= '0';

end if;

if c = '1' then

g <= '1';

else

g <= '0';

end if;

end if;

end process;

D

CLK

Q
a b

fD

CLK

Q

D

CLK

Q g«c»

signal_var_update :

process(clk)

variable c : std_logic;

begin

if rising_edge(clk) then

b <= a;

c := a;

f <= b;

g <= c; -- g <= a

end if;

end process;

g

Default values in processes

• Ensures we always have an output value

(avoiding latches).

• Be reasonable with use of “default” values

in a process

– Does only change where it’s necessary

– This works because processes are compiled

sequentially…

• The last assignment within the process will take

precedence

– Don’t bury default values within nested ifs...

• Readability and maintainability suffer if you do..

• Default values are commonly used for state

machine outputs

– typically active in one state only…

10

Signals and variables

• Signals and variables can be used to hold data

• Signals

– A signal can be used within the whole architecture

– Connect to other architectures through the entity ports

– Changes value when a process terminates in simulation

• Variables

– Variables are declared and only used locally within a process (function or

procedure)

– Assigned using “:=“ (Ex: var := ‘1’;)

– Unlike a signal the variable changes value immediately in simulation

• Immediately = based on position

• can hold multiple values within one process.

– Variables are useful to keep intermediate results in algorithms

• Subprograms initialize variables every run.

• Process variables initialize once, when simulation starts
11

Rule of thumb:

• Signal for all registers (FFs)
"out is a signal that can be read outside the entity"

«when others»:

• use variable if possible…

If and case in VHDL Processes

12

• if and case are used much like in

other programming languages like C,

Java etc.

– In if-tests we can test on different

signals/variables

• if-tests have a built in priority

– In case-tests we are only testing in one

signal (with one or more bit)

• No built in priority because the same signal

are being used everywhere in the test

If • Must be in process

• Multiple conditions

• Multiple targets

• prioritizes

• First option has priority
– (think of two-input multiplexers)

• Can be used to infer latches and Flipflops
– FF when edge triggered (rising_edge)

– Latch when not sufficiently specified

• This is a trap, avoid this!

• Can be nested using «elsif»
– And replace case statements…

– Consider using case…

• Avoid deep nesting

– 4 degrees should be maximum…
01.02.2022 13

If example (all input specified):

01.02.2022 14

process(all) is

begin

if inp1 then

if inp2 then

a <= '1';
b <= '1';

else

a <= '1';
b <= '0';

end if;

else

a <= '0';
end if;

end process;

inp1 inp2 a b

1 1

1 0

0 1

0 0

Always specify all outputs for all conditions of inputs!

inp1 inp2 a b

1 1 1

1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0 Latched

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0 Latched

0 0 0 Latched

process(all) is

begin

if inp1 then

a <= '1';
b <= inp2;

else

a <= '0';
-- b ass. missing

end if;

end process;

if../case..

15

A

0

1

B

L

K

J

0

1

OUTPUT

L

K

J

OUTPUT

A

If nesting vs. chaining (using elsif)

01.02.2022 16

process(all) is

begin

if (input = 4d"1") then isprime <= '1';
elsif (input = 4d"2") then isprime <= '1';
elsif (input = 4d"3") then isprime <= '1';
...

else isprime <= '0';
end if;

end process;

process(all) is

begin

if (input = 4d"1") then

isprime <= '1';
else

if (input = 4d"2") then

isprime <= '1';
else

if (input = 4d"3") then

isprime <= '1';
...

end if;

end if;

else isprime <= '0';
end if;

end process;

If nesting for priority – danger zone

01.02.2022

17

process(all) is

begin

if (inp1 = a) then

if (inp2 = b) then

if (inp3 = c) then

<statement 1>

<statement 2>

else

<statement 3>

end if;

end if;

else

<statement 4>

end if;

end process;

Sometimes it can make sense to use nesting

- clocked processes and state machines

• It is easy infer latches

• When not all input options are covered

• When some output is not covered for all options

Consider other options when creating CL

- improve readability

- Reduce risk for latches

- It is OK to nest other statements within if…

- select …

- when … else

- case …

Example

• Nesting if-statements will

conceal these errors easily,

thus providing an endless

source of errors

architecture poor of latches is

begin

-- if invec = "11" => outvec is latched

missing_input: process(all) is

begin

if invec = "00" then

outvec <= "0000";

elsif invec = "01" then

outvec <= "1110";

elsif invec = "10" then

outvec <= "0110";

end if;

end process;

-- if input='1' then out2 is latched.

-- if input='0' then out1 is latched.

missing_output: process(all) is

begin

if input then

out1 <= '1';

else

out2 <= '0';

end if;

end process;

end architecture poor;

01.02.2022 18

library ieee;

use ieee.std_logic_1164.all;

entity latches is

port(

invec : in std_logic_vector(1 downto 0);

outvec : out std_logic_vector(3 downto 0);

input : in std_logic;

out1, out2 : out std_logic

);

end entity latches;

Case

• Must be in process

• single input vector

• Multiple targets

• Every alternative has same priority

• Every option for input must be declared

– ‘when others’ can be used
• be wary of changes in input type…

– Can infer latches too…

• When not defining all outputs for all inputs

• Matching case- «case?»

– Allowes for don’t care’s

01.02.2022

19

process(input) is

begin

case input is

when x"1" | x"2" | x"3" | x"5" | x"7" |x"b" | x"d" =>

isprime <= '1';

when others => isprime <= '0';

end case;

end process;

The typical use-case for case is

state machines.

Case is excellent when you want to

set several output vectors

depending on one state vector.

Case creating latches:

01.02.2022 20

process(input) is

begin

isprime <= '0';
isfour <= '0';
case input is

when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d" =>

isprime <= '1';
isfour <= '0';

when x"4" =>

isprime <= '0';
isfour <= '1';

when others =>

isprime <= '0';

end case;

end process;

null;
]= latch inferred

Default values can be a

good solution when using

case statements.

‘null’ statement should

only be used in CL when

using default values for all

outputs.

When … else

• Can be used concurrently

(outside processes).

• Multiple conditions

• Single target

• prioritizes

• Can replace if statements for single target

• Can infer FF’s/latches

• Compact

– Suitable when complexity is low

01.02.2022 21

isprime <=

'1' when input = x"1" else

'1' when input = x"2" else

'1' when input = x"3" else

'1' when input = x"5" else

'1' when input = x"7" else

'1' when input = x"b" else

'1' when input = x"d" else

'0';

q <= '0' when reset else 'd' when rising_edge(clk);

a <= b when en;

^^ always keep ‘else’ in mind…

With … select

• Can be used concurrently

• single input vector

• Single target

– Must have all input cases defined

• Can also infer latches

– Least likely

• Feedback obvious

• Compact and readable

01.02.2022 22

with input select isprime <=

'1' when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d",

'0' when others;

with a select g <=

16d"1" when 16d"1",

16d"4" when 16d"2",

16d"8" when 16d"3",

g when others;

If, case, when … else, with select - summary

• When in doubt…

– Try ‘with…select’

• This will force you to make visible choices.

• Only use ‘if’…

– When you need to prioritize conditions…

– and have multiple targets

• Typically used for clocked processes.

• It is fine to use select… or when/else inside if and case

– Do you need if inside if?..

– Case inside case? ..

– Readability suffers when nesting several levels of if or case

23

Whatever you choose,

keep the following in mind:

define

• all outputs for

• all conditions

Statement Targets Conditions Process

if Multiple Multiple Required

case Multiple Single Required

when … else Single Multiple Optional

with … select Single Single Optional

Loops in VHDL

• Both simulation and synthesizable code

• Three types

– Simple loop- until exit

– While- loop condition is true

– For loop

• Counted

– Numbers or elements/ ‘range

• Loop parameter static

– Can be increased using ‘next’

– ‘next when <condition>’

• ‘exit’+(optional loop_label)

– Can be used in all loops

– Innermost loop is default

– Nested loops: use label
01.02.2022 24

--SIMPLE LOOP--

variable i: integer := 0;

...

loop

statements;

i := i + 1;

exit when i = 10;

end loop

--WHILE LOOP--

variable i: integer := 0;

...

while i < 10 loop

statements;

i := i + 1;

end loop

--FOR LOOP--

for i in 1 to 10 loop

statements;

end loop;

--FOR LOOP2—

type frukt_type is (eple, pære, banan);

...

frukt_loop: for f in frukt_type loop

statements;

when <condition1> next frukt_loop;

when <condition2> exit frukt_loop;

end loop;

Entity/architecture

• Entity and architecture are the two

most fundamental building blocks in

VHDL

• Entity

– Connection to the surroundings

– Port description
• Input/output/bi-directional signals

• Architecture

– Describes behavior

– An entity can have many architectures

– Can be used to describe the circuit on

several levels of abstraction:
• Behavioral (for simulation)

• RTL (Register Transfer Level)

• Dataflow

• Structural

– Post synthesis (netlist)

– Post Place & Route (netlist + timing)

25

IN A

IN B

IN C

OUT 1

OUT 2

ENTITY

Generics

• In addition to the port description an

entity can have a generic description

• Generics can be used to make

parameterized components (generic)

– can be used for structural information

• both synthesis and simulation

– can be used for timing information

• for simulation only

– Example 1:
• Time delay can vary between circuits, but the

behavior is the same

– Example 2:
• The number of bits can vary between circuits,

but the behavior is the same

26DELAY_LENGTH is a subtype of the type time

from the predefined (always in use) package “std”

Structural design

• Every Component instance has an underlying Entity/architecture pair

• We can easily re-use «entities»

• We can make a hierarchic design with as many levels we want

– Try keep design hierarchy manageable...

27

Structural design

• Reuse of modules (entities and architectures)

• Generic modules (generics)

– For example scalable bus widths

– Configurable functionality

• Breaking up big designs to smaller and more

manageable building blocks

– Think functional blocks

– Connection of functional blocks

(entities/components/modules)

• Easier to collaborate within a design team

– Well defined interface between modules

• Any entity-/architecture pair can be used as a

building block in a structural description

– Pairing of components
28

IN 1

IN 1

IN m

OUT 1

OUT 2

ENTITY

...

OUT n

...

Structural design (netlist)
• A netlist is a description of

components used, and their

connections

– Synthesizing is creating a netlist

using the available primitives for a

(PL/ASIC) device.

– The top level in larger designs is

often purely structural, although

with design elements and not

device primitives

• Here we pick up the entities from

the «working» library

• The last compiled architecture are

being used

• Port mapping:
– «Association» can be done by position

– named association is less error prone.

(ex: g1: Not1 port map (x => a, z=>p);) 29

Structural design with generate statement

30

• generate is can build multiple

components in a small loop.

– Requires indexable parameters

in connected signals

• Example: Bidirectional bus

01.02.2022 31

Suggested reading

• D&H 7.1- 7.3 p129-153

