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Messages

« Master presentation Tuesday at 14:15 @ROBIN (4 floor south)
« [Oblig 6, =>)

— Code should work
» Compile (Questa)
* Run
* Results to be reproduced in simulator when using the tcl / do file
* Implementable when required
— Readable, Not perfect
— Sources (templates or code from websites or other students) should be referenced
» Not referencing copied code is considered cheating
* Heavily modified?

-- heavily modified code from my_HDL_site.com
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Resets in IN3160

« All designs should start in a known state
— Predefined values for all registers, no metastability.

— Well implemented reset functionality ensures this.
« Can be invoked both at start and later

« The FPGAs we use are RAM based and

— will always start in a predictable configuration
— => We can start without using reset
+ Default state is ‘0’ (the FPGA’s we use)
* Not using reset at start is an exception
— Reset functionality should always be implemented
— There is no guarantee for (other) designs to be safe without implicit initialization
— If we do not have a predefined source for reset signals, use one button...
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Course Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

: _ _ Goals for this lesson:
In this course you will learn about the design

of advanced digital systems. This includes * Know the principles used in microcoded
programmable logic circuits, a hardware design state-machines

language and system-on-chip design . .

(processor, memory and logic on a chip). Lab « Be able to describe how microcoded state
assignments provide practical experience in machines can lead to MICroprocessors

how real design can be made.

After completion of the course you will:

« understand important principles for
design and testing of digital systems

« understand the relationship between
behaviour and different construction criteria

 be ableto describe advanced digital
systems at different levels of detail

* be able to perform simulation and
synthesis of digital systems.


https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
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Microcoded FSMs

FSM coded using memory (asynch. mem.)
Can be used for any FSM
Input and state decides memory output

Single ROM solution

Both Mealy and Moore possible depending on decoding...
» General solution is a Mealy machine (Moore is a special case).

Single ROM with output synchronization
No hazards, but output is delayed by one clock cycle

Dual ROM Moore machine

Separate state and output decoding
Easier to comprehend

Requires the least amount of storage
least impact on downstream critical without synchronizers.

Dual ROM Mealy machine

Both memories has the same address decoding
* No gains in terms of storage or critical path

ROM decoding added to critical path for downstream modules.

input

Single ROM FSM

Address

next_st ate/

s/

state
Qv;l
s

> CLK

+

input
.// addre_s_s - - decoding’ Memory //
i s+ C @y . (ROMorRAM)| ‘st
A 4 output
/o
Single ROM, Output synchronized
next_state/ state
7 Q
S S
. > CLK
input Address "
‘// addre_s§ / © decoding’ Memory //
i st I (cy - (ROMorRAM)| * s*o
: o next_outy b , output
o] / /O
> CLK
input | address :.‘Add next_stat state v .Add ; output
- ress" . ress’.
.// -  decoding’ Memory D Q // - decoding Memory +
! s : (cy) . (ROMorRAM) s s © (cy) . (ROMorRAM) o
- > CLK E
Dual ROM, Moore FSM
address | next_stat state
dAdd:je'SS: Memory L D L : output
s+i | ¢ e?‘c’u'”g, (ROM orRAM) [ /s 7 | Address’ Memory
ERRS > cik 7 de?‘c’f)'"g._. (ROM or RAM) [ 7o

Dual ROM, Mealy FSM
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Example: Vending machine

« Specification: — 10C Ready —
— We want to design a vending machine —| %¢ Coin —
that sells drinks for 40c. — dk Dispense [—

— reset Return [—

— The machine accepts 20c and 10c
coins (all others will be rejected
mechanically).

— If 40c are inserted a drink shall be
dispensed

— If more than 40c is inserted all coins
are returned

— The machine has two lights
* One to show that it is ready
* One to show that further coins are needed

Dispense
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ASM diagram & State and ouput table

« If possible- simplify early. i
— Both state and output tables and ASM charts
can be used to find redundancy

Coin= 1

F

State 10c 20c No coin Ready Coin Dispense | Return T i
—T
F

S_RDY S 10 S 20 Self 1 0 0 0 530 vy

-

Coin="1
S_10 S_20 S_30 Self 0 1 0 0

i 1
S 20 S_30 S _DISP | Self 0 1 0 0 o .
F

S DISP y
S 30 S DISP S RET Self 0 1 0 0
Dispense = ‘1’
S DISP | S_RDY S_RDY S_RDY 0 0 1 0 T |

S_RET

S_RET S_RDY S_RDY S RDY |0 0 0 1

Return =1’

| 8
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Example: Single ROM, extended State and ouput table

Moore machine implementation:

— One address for every unique
combination of inputs and state

Pro’s
— Can be implemented using fixed hardware
« ROM + afew state registers
— Reprogrammable

Con’s
— Aot of duplicated data in ROM

Output the same for all states
Here: 3x output data in legal states...
— lllegal states need a plan..

Here: input = "11", state ="110", "111"
=> 14 illegal states, 18 legal

Memory

State

Next state

Output

Address

(s+i)

Data
(n_s+0)

State

No
coin

10c

20c

Ready

Coin

Disp-
ense

Re-
turn

000

00

000

1000

S_RDY

Self

000

01

001

1000

S 10

000

10

010

1000

S_20

001

00

001

0100

S 10

Self

001

01

010

0100

001

10

011

0100

S_30

010

00

010

0100

S 20

Self

010

01

011

0100

010

10

100

0100

S DISP

011

00

011

0100

S 30

Self

011

00

100

0100

S_DISP

011

00

101

0100

S _RET

100

00

000

0010

S _DISP

S_RDY

100

01

000

0010

S_RDY

100

10

000

0010

S_RDY

101

00

000

0001

S_RET

S_RDY

101

01

000

0001

S_RDY

101

10

000

0001

S_RDY

Example resource usage:
— 3 state registers (+ 4 output registers if synchronizgd.)
— 5 bit address = 32 lines, 7 bit data => 224 bit ROM
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Example: Adding a sequencer can reduce storage

* Here:

i sequencer i
*  We reduce the address space from 25** to 2° g i
(ie. Memory has as many instructions as states)
- : |
In branchable states: . e S
Input decides if we jump 0, 1 or 2 states | P2 00 S ok
Non branchable state => fixed next state vl e ;
next_state <= S_RDY A S !
Adding 1 branch bit and sequencing logic reduces
address space from 32 to 8 and data word size  rddress
from 7 to 5. L decocing” Memory |_ oy forn
. . . ©(cy = (ROMorRAM) / bro o/ /o
Can we make Mealy with this reduced size ROM? L > Clk
Memory State Next state Output
I(\gt):lr‘ess Data (b+o) State No coin 10c 20c Ready Coin Dispense |Return
000 1 1000 S_RDY Self S_10 S_20 1 0 0 0
001 1 0100 S_10 Self S_20 S_30
010 1 0100 S_20 Self S_30 S_DISP 0 1 0 0
011 1 0100 S_30 Self S_DISP S_RET
100 0 0010 S_DISP S_RDY 0 0 1 0
101 0 0001 S_RET S_RDY 0 0 0 1

10
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VHDL
microcode
example (1/2):

« Entity as
earlier

« Read ROM
from file as
earlier code

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;
use STD.textio.all;

entity vending is
port(
clk, reset, twenty, ten :
ready, coin, dispense, ret :
end entity vending;

in std_logic;
out std_logic);

architecture microcode of vending is

constant data_width: natural := 5;
constant addr_width: natural := 3;
constant filename: string := "ROM _data bits.txt";

type memory_array is array(2**addr_width-1 downto ©) of
std_logic_vector(data_width-1 downto 0);

impure function initialize ROM(file name: string) return memory_array is

file init_file: text open read_mode is file_name;
variable current_line: line;
variable result: memory_array;
begin
for i in result'range loop
readline(init_file, current_line);
read(current_line, result(i));
end loop;
return result;
end function;

--initialize rom:
constant ROM_DATA: memory_array := initialize_ ROM(filename);
signal address: std_logic_vector(addr_width-1 downto ©);
signal data: std_logic_vector(data_width-1 downto 0);
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isequencer
Lo
1 next_state, | state
P e 7
i 2 > CLK
ULV, \N :
i |
|| cﬁigrdils'lsg Memory next_out b / output
©(cy - (ROMorRAM) o/ /o
E . >CLK

--state assignment using std_logic (no “state_type”):
signal state, next_state : std_logic_vector(2 downto 0);
alias b : std_logic is data(4);

begin
-- ROM data CL
data <= ROM_DATA(to_integer(unsigned(address)));
address <= state;

-- 1: register assignment:
process (clk, reset) is

begin
if reset then
ready <= '0';
coin <= '0"';
dispense <= '0';
ret <= '0"';
state <= (others => '0');
elsif rising_edge(clk) then
ready <= data(3);
coin <= data(2);
dispense <= data(1l);
ret <= data(9);
state <= next_state;
end if;

end process;

-- 2: combinational next_state logic (sequencer)

next_state <=
(others => ') when not b else
std_logic_vector( unsigned(state) +
std_logic_vector( unsigned(state) +
state;

end architecture microcode;

) when ten else
) when twenty else

12
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ROM (text file content)

00000 « Address 7 is first line since we read In
00000 the ‘range order (2**n-1 downto 0).
00001 _ _
00010 — To have address O first we should read in
10100 ‘reverse_range

10100

10100

11000 for i in result'range loop

readline(init_file, current_line);
read(current_line, result(i));

Memory end loop;
?g?ress Data (b+o)
e Lo « Why do we have two lines with 0?
= — « What will happen if state is set to
TEEEN address 7 0g 6..? )
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Reducing delay e

I sequencer i
« Can we reduce output delay? ; N g
- 1Y
1 | t_state, state
begin Do B L
1 1 / /
-- ROM data CL L2 0 Ll
data <= ROM_DATA(to_integer(unsigned(address))); input ;AN | 000 0 |
address <= state; i’ : ZEn
-- output assignment based on state...
ready <= data(3); B :
coin <= data(2); . Address
. | 1 . Memory | / / output
dispense <= data(1); {éﬁng.<(ROMorRAM) 7 7
ret <= data(9); T
-- 1: sequential state assignment:
state <= (others => '0') when reset else next_state when rising_edge(clk);

-- 2: combinatorial next_state logic

next_state <= « What type of FSM is this?

(others => ') when not b else

std_logic_vector( unsigned(state) + 1) when ten else . .
std_logic_vector( unsigned(state) + 2) when twenty else ° W|” |t Work')
state;

end architecture microcode;

14
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General Sequencer / Microsequencer

« A device that generates addresses

— Typically a counter
* + some logic for various types of jumping

— Reduces the need to store subsequent addresses
» a sequencer does only make sense when there is some sort of order

— It does not make sense if next state always can be any state
(ie totally random)

15
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Microcoded processors

A microcoded FSM with a
sequencer can be seen as a

microprocessor.

— ROM stores instructions that are executed
on each clock cycle.

— UuPC (Microprocessor Counter) is the current
state.

Branching is usually done with several
bits, to enable different type of usage

Input is the machine code we want to
execute

Processors have other functions and
dedicated memory

- ALU

— Instruction memory

— Data memory

+1

Mux3
0
\ nuPC
1 7

uPC

i

Branch
logic

#—a Memory df—+—=
S S+0+b
branch_instruction b

branch_target

S

n_out

out

clk
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Going from Moore to Mealy (without sequencer)

Dispense <= ‘@’

—

S_RDY I
Ready
T

Té

B
— -3
g
3

17
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State table conversion (legal memory entries shown)

Memory State Next state Output Memory State Next state Output
Address |Data No - Disp- |Re- Address |Data No Disp- |Re-
. State | . 10c  |20c Ready |Coin : p

(s+i) (n_s+0) coin ense turn (s+i) (n_s+0) State i 1ec 20c Ready |Coin anse |kurm
000 00 |000 1000 [s_RDY [self e 20 1000 |5 RDY [self

000 01 |e01 1000 S_10 1 ) ) o

001 00 |001 0100[S_10 [self 00 10 10 1000 S_20

o A S 520 o1 00 |01 0100 [S_10 |Self e 1 o e
001 10 |011 0100 S 30 =

010 00 |010 01005 20 |[self o1 o1 ad 5_20

P10 01 [011 o100 S_30 0 1 ) o P01 10 11 0100 S_30

010 10 AESROLED Lt 10 00 10 0100 [s 20 |self 0 1 0 0
911 00 |011 0100 |S_30

011 o0 |100 o100 Brics 10 o1 11 0100 S_30 0 1 0 0
211 00 [101 0100 S_RET 10 10 00 0010 S_RDY [0 0 1 0
166 60 1090 @910 EEEREEES RDY 11 60 [11 o100 |s 30 [Self 0 1 0 0
100 01 |00 0010 S_RDY 0 0 1 o = G

100 10 |00e o010 5 RDY 11 o1 S_RDY 0 0 1 0
101 00 |0ee 0ee1|s ReT [s_roy 11 10 00 0001 S_RDY [0 0 0 1
101 01 |00 0001 S_RDY ") ") ) 1

101 10 |00 000l S_RDY

— Going from 224 bit ROM to
4 address bits and 6 output bits => 96 bit ROM ( (2"4) * 6)

— State should be msb in address to make comprehensible decoding

— what about unused ROM entries (illegal combinations)?: coming next slide

18
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ROM data

« ROM data must come in
correct sequence

— here;

« 3legal input combinations per
stored state

* We must use multiple of 2”*n
(=4), otherwise we write in the
wrong address

« Comments at line end = OK
— Because we use readline

001000
011000
101000
000000
010100
100100
110100
000000
100100
110100
000010
000000
110100
000010
000001
000000

S_RDY

S_RDY -> S_10
S_RDY -> S_20

illegal
S_10 ->
S_10 ->
S_10 ->
illegal
S 20 ->
S 20 ->
S 20 ->
illegal
S_30 ->
S_30 ->
S_30 ->
illegal

state, no output,
S_10

S_20

S_30

state, no output,
S_20

S_30

S_RDY & dispense
state, no output,
S_30

S_RDY & dispense
S_RDY & retur
state, no output,

next

next

next

next

state S_RDY

state S_RDY

state S_RDY

state S_RDY

19




UiO ¢ Department of Informatics library IEEE;

University of Oslo use IEEE.STD LOGIC 1164.all;
use IEEE.numeric_std.all;

VHDL mlcrocoded use STD.textio.all;

. entity vending is
mealy machine port(
clk, reset, twenty, ten : in std_logic;
ready, coin, dispense, ret : out std_logic);
end entity vending;

architecture microcode_mealy of vending is

constant data_width: natural := 6;
. constant addr_width: natural := 4;
* ROM size Changed constant filename: string := "ROM _mealy data bits.txt";
. . . type memory_array is array(2**addr_width-1 downto @) of
— 4 bit address gives 16 entries std_logic_vector(data_width-1 downto 0);
impure function initialize_ROM(file_name: string) return memory_array
is
file init_file: text open read_mode is file_name;
° Readlng in r.ever.se) r.ange var-}able current_line: line;
variable result: memory_array;
begin

for i in result'reverse_range loop
readline(init_file, current_line);
read(current_line, result(i));
end loop;
return result;
end function;

20
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VHDL microcoded
mealy machine

--initialize rom:

constant ROM_DATA: memory_array := initialize_ROM(filename);
signal address: std_logic_vector(addr_width-1 downto 9);
signal data: std_logic_vector(data_width-1 downto 0);

-- state register declaration
signal state : std_logic_vector(l downto 9);

« State only 2 bits begin
-- ROM data CL
® /\(j(erEESES. data <= ROM_DATA(to_integer(unsigned(address)));
_  State is MSB in address address <= state & twenty & ten ; -- state is MSB
(necessary) -- output assignment based on state...
— Input gives rest of address ready <= data(3);
coin <= data(2);
dispense <= data(1);
ret <= data(9);

-- sequential state assignment:
state <= (others => '0') when reset else data(5 downto 4) when rising_edge(clk);

end architecture microcode_mealy;

21
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Microcode considerations..

« ROM size can be reduced by

— Separating output CL

— CL can be a separate ROM

» Separate state CL and output CL

— What does the synthesizer do
with our FSMs?

* Breaks it up into LUTs and

. Address ':'

next_state

flipflops
 LUT = small ROM..

D Q ‘ state |
S / S

. > CLK
input , address / .': decoding’ N(e;(;;ate;zf/:(; /
: CL .. or
|/ 5+ia/ ,': ( ) /S
Cl-input
s+icl /
next_state / state
: s/ s
Address P c
‘ : ..~ Next State Logic
t . decoding
input / address /| (o) (ROM or RAM) [
4 I s+ia’ - 7s
I // Add
. ress - i
. : Output L
CL-input o decoding’ P et
_S+ian——————__

" (@) . (ROMorRAM)

i output

23
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machine code Microcoded FSM processor state
. Instructions With sequencer / mrE——
Microprocessors
statusT l command
Memory
Microcoded state machines can and < —
Datapath ((\,-'-3 112
has been used to create processors. oo - W e |
— Early x86 processors were entirely Data *}t‘i P
microcoded (8088, 8086, 80286, 80386). etc > ClK
— Microcoded processors can be patchable..

+ => BIOS upgradeable, etc. Read/ write commands,
data and adresses

ROM content dictates instruction set (machine code)

Modern processors are normally not (fully) microcoded

— Optimization and move towards RISC dictates hardwired circuitry for speed and power

— Method can still be used —
« for complex instructions, variable length instructions
* To ensure updates can be implemented after shipping..
* One could argue this is what we actually when using LUT based FPGAs

24
More: https://en.wikipedia.org/wiki/Microcode
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Summary of microcoded state machines

All FSMs can be implemented using 1 ROM + state registers

— The general solution suggests a mealy machine,
* We get Moore having the same output regardless of input in each state

Using 2 ROMs (separate state and output decoding)

— May reduce memory usage
» when none or only some input are used to determine ouput

Sequencers, Branching- and Output logic

— may reduce ROM size

— adds structure outside the state ROM.

— This is one way of implementing processors and instruction sets.

Consider using microcode when...

— the state machine is (best) defined by a (large) table
» when changes to the state table likely will happen at some point in the future.

25
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Suggested reading

« D&H 18
— 18 p398-427

Next lesson
e Clock Domain Crossing “CDC”

26



