
IN3160, IN4160

1: Subroutines, packages and libraries

2: Clocked statements

3

Goal

• Learn how to create

subroutines using VHDL

• Learn good practice for

writing subroutines

• Learn which packages are

most used in VHDL

• Learn how to use and create

libraries and packages in

VHDL

• Subroutine types

– Functions

– Procedures

• Functions and operators

• Procedures

• Overloading in VHDL

• Libraries

– Package/package body

• Standard libraries

• Clocked statements

Overview

Next: Verification & file IO

Why Subroutines

• Reduce code complexity

• Make the code more readable

• Make the code easier to maintain

– avoid duplicating code

• No need to run through the whole code for one change

• Make code easier to test or verify

4

VHDL Subroutine types and practice:

• Two types:

– Functions – returns one value

– Procedures – a group of statements

• General good practice:

– use functions!

– Limit the use of procedures to testbenches

• Consider functions, entites or processes before using procedures

– Using procedures to create HW is sometimes used to generate structure
» Ie. not RTL code.

5

Functions-
• take one or more parameters

– Parameters in functions
• Can not be changed/manipulated

– always mode “in”

• (only) constant, signal or file

– constant is default

– Parameters are separated by ‘;’

(a: bit; b: my_type;…)

• return only a single value

– The value can be of any type

• Including vectors and custom types

• pure functions use only their input parameters => CL

• Impure functions make use of data visible where they are declared (as parameters)
– Ex: File IO (next lecture)

• Cannot have wait- statements. (execution within a single simulation cycle)

• Cannot have internal signals (no storage)
6

function sum_function(vect: integer_vector) return integer is

variable sum: integer := 0;

begin

for i in vect’range loop

sum := sum + vect(i);

end loop;

return sum;

end;

parameter(s) single return value

b <= std_logic_vector(to_signed(

sum_function((

to_integer(signed(a2)),

to_integer(signed(a1)),

to_integer(signed(a0)))),

b'high - b'low + 1));

The «extra» paranthesis is

needed to make one vector

out of the three integers.

Without, they will be

interpreted as three separate

parameters of wrong type

Function usage example:

7

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity subprogram is

generic(k: positive := 4);

port(

a2, a1, a0: in std_logic_vector(k-1 downto 0);

b : out std_logic_vector(k-1 downto 0));

end subprogram;

architecture example of subprogram is

function sum_function(vect: integer_vector)

return integer is

variable sum: integer := 0;

begin

for i in vect'range loop

sum := sum + vect(i);

end loop;

return sum;

end;

begin

local: process(all) is

variable v: integer_vector(2 downto 0);

variable sum: integer;

variable s: signed(b'high-b'low downto b'low);
begin

v:=(

to_integer(signed(a2)),

to_integer(signed(a1)),

to_integer(signed(a0)));

sum := sum_function(v);

s := to_signed(sum, b'high - b'low + 1);

b <= std_logic_vector(s);

end process local;

end architecture example;

More Functions…

8

• Can be used for both synthesis and simulation

• Can (also) be overloaded (two or more functions having same name)

– different parameters and or return type

• Are declared in the declarative region of

– architectures

– processes

– packages (declaration and body – example later)

• Are frequently used for

– Computation

– Type converting

• Packages in libraries we use typically define functions

– IEEE (library)
• std_logic_1164 (package)

• numeric_std

• …

– We use these all the time…

architecture func_arch of functest is

-- declarations

function bool2bit(a: boolean) return bit is

begin

if a then

return ‘1’;

else

return ‘0’;

end if;

end bool2bit;

-- statements

begin

…

end func_arch;

Procedures…

• do not have a return value

• can have

– in and out parameters

• in is default

• out parameters (must be set)

– wait statements

– signals

– file access

• cannot be used in a statement

– Only standalone «calls»

• Are typically used in test benches

– Reading test vectors from file

– Applying test vectors

– Writing test results to file
9

procedure sum_proc(vect: in integer_vector;
sum: out integer) is

begin

for i in vect’range loop

sum := sum + vect(i);

end loop;

end;

-- «DO NOT DO THIS AT HOME»

-- (can and should be solved using function)

parameter(s)

no return value

• Can manipulate both out-parameters

and other signals declared in the

same (underlying) region...! !

Example- when not to use procedure:

• Why aren’t c and d equal? 10

process(all) is

variable v: integer_vector(2 downto 0);

variable sum: integer;

variable s: signed(b'high-b'low downto b'low);
begin

v:=(

to_integer(signed(a2)),

to_integer(signed(a1)),

to_integer(signed(a0)));

sum := sum_function(v);

s := to_signed(sum, b'high - b'low + 1);

c <= std_logic_vector(s);

end process local;

process(all) is

variable v: integer_vector(2 downto 0);

variable sum: integer;

variable s: signed(b'high-b'low downto b'low);
begin

v:=(

to_integer(signed(a2)),

to_integer(signed(a1)),

to_integer(signed(a0)));

sum_proc(v,sum);

s := to_signed(sum, b'high - b'low + 1);

d <= std_logic_vector(s);

end process;

• the procedure is not CL.
• sum accumulates
• process variable -> single instantiation

• In HW, d would be unstable due

to this feedback loop, since the

process is not clocked.
• -6 and -8 is the result of the 4 digit

two-complement representation.

To be revealed in lecture...

Only difference apart from

declarations (previous slides)

Functions vs Procedures

Functions Procedures

Returns a value (can be vector) of any type A collection of statements (Sets signals)

Can only use variables, no signals. Can contain both signals and variables that will be

hidden from the outside.

May use signals from the underlying structure.

Cannot replace procedures fully Can replace functions (DON’T DO THAT!)

Much used in conversions

(from bit to STD_LOGIC, from some_type to

my_type, etc).

Much used for repetitive tasks- particularly in test

benches.

Typically found in libraries and packages Mostly used for simulation/ test benches.

Always “instant” (CL), never time based Can use “wait” and timing information.

Can be used in statements…
a <= my_func(…);

Can only be used standalone…

my_procedure(..);

11Neither can store internal values between calls.

Parameters for subprograms

Parameters or «interface objects» have up to five parts

1. Class : constant (default), variable, signal, file

2. Identifier: the name you decide must be defined

3. Mode: in (default) or out

4. Type: std_logic, integer, bit, text, … must be defined

5. Default value := optional

Ex: procedure apply_vectors(
file vector_input : text;
addend : integer := 42;
signal valid : out boolean;

file vector_output : text); 12

Good practice

• When considering to create a subprogram:

– Is it possible to do this using a function?

• Yes: use function

• No:.. Is it for creating HW?

– If yes: consider a process, or a separate entity + architecture

– Is it for simulation only, and a function will not do:

• Use a procedure

• Subprograms generally should have a single purpose.
– Try see if the purpose can be said in one sentence without use of “and” or “or”…

13

Good practice

• Use functions when you can

– Limitations in functions makes it easier to achieve well structured code

– readable

– maintainable

– short

• Limit procedures to test bench code

– It is easy to create messy code using procedures since they allow

• multiple in and out parameters

• to use signals and create storage elements

14

Packages

• In a package declarative region you can add:

– Component declarations

– Data type definitions

– Constants

– Subprogram declarations

• Functions

• Procedures

• The declarative region is publicly visible

– similar to header files in C

• Package body-

– declarations is not publicly visible

– typically contains content of-

• subprograms

• components
15

package my_pkg is

-- publicly visible declarations

type imb_vec is record

re: bit_vector;

im: bit_vector;

end record;

constant IMB_VEC1: imb_vec := (re => "010", im => "001");

function bool2bit(a: boolean) return bit;

…

end;

Package body my_pkg is

-- non visible, internal declarations

function bool2bit(a: boolean) return bit is

begin

…

end bool2bit;

…

end my_pkg;

Packages

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

-- Package Declaration Section

package my_package is

constant c_PIXELS : integer := 65536;

type t_my_rec is record

full: std_logic;

empty: std_logic;

end record t_my_rec;

component my_component is

port (i_data : in std_logic; o_res : out std_logic);

end component my_component;

function Bit_OR (i_vec : in std_logic_vector(3 downto 0))

return std_logic;

end package my_package;

-- Package Body Section

package body my_package is

function Bitwise_OR (i_vec : in std_logic_vector(3 downto 0))

return std_logic is

begin

return (i_vec (0) or i_vec (1) or i_vec (2) or i_vec (3));

end;

end package body my_package;
16

1

2

library work;

use work.my_package.all;

To use package contents,

include these two lines:

Save and compile your

package in the work folder

Typical use of packages

• Typically packages is organized such that it contains

– custom or abstract data types

• Ex: I have a project that will incorporate calendar data

– => lets make a package for all types used

– functions that work on these abstract data types.

• Create packages when you have

– function(s) that may be used by more than one design unit.

– Types that may be used in several design units

– Components that may be used in several designs

– Simulation -models, -procedures and -functions that can be re-used 17

Use of functions library

• A “package/body” pair can be compiled

to work or to another library.

– This needs to have a logic name. Here: mylib

• The logic name is given in the current

tool and is reflected in the directory

structure of the tool

18

Operators

• Operators are defined in the same way as functions, but by “<operator name>”

• Operators are being used differently from functions

• You can create overloaded operators (ie ‘+’ for my_type),

– but not create new

19

-- package declaration (overload)

function "+" (a,b :std_logic_vector) return std_logic_vector;

...

-- usage

sum <= a + b;

-- package declaration (non overload)

function add (a,b :std_logic_vector) return std_logic_vector;

...

-- usage

sum <= add(a, b);

Overloading

• Overloading means defining the same operator-, function- or

procedure-name for different data types or a mix of data types.

• Overloaded subprograms (operators, functions and procedures)

may have different number of parameters

• Synthesis tools separates the usage of overloaded subprograms

by comparing actual parameters (those in use) with formal

parameters (in the subprogram declaration)

20

Overloading

• There are a lot of standard libraries with overload operators, functions and

procedures in IEEE 1164 and IEEE 1076.3

– IEEE 1164

• Package std_logic_1164

• Synopsis libraries (compiled to IEEE, but not standard)
– Package std_logic_unsigned

– Package std_logic_signed

– Package std_logic_arith

– Package std_logic_textio

– Don’t use these in this course.
» Std libraries covers the usage and there are some differences.

– IEEE 1076.3

• Package numeric_std

• Use the package IEEE.numeric_std for integer arithmetics with the use of the data

types signed and unsigned

21

IN 3160, IN4160

Clocked processes and statements

Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design (processor,

memory and logic on a chip). Lab assignments

provide practical experience in how real design can

be made.

After completion of the course you will:

• understand important principles for design and

testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital systems

at different levels of detail

• be able to perform simulation and synthesis of

digital systems.

Goals for this lesson:

• Know different approaches to

achieve clocked logic in VHDL

• Why they exists

• Benefits and pitfalls

• ...

08.02.2022

23

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

(c) 2005-2012 W. J. Dally

CL
i

n

o

m

Combinational Logic

Sequential Logic

CL
in

n

out

m

state

s

Sequential logic has state

Do not use feedback into CL without using flipflops!

D

CLK

QCombinational
logic

D

CLK

Q

Sequential design = CL + FFs

25

• Sequential designs are state machines

• Sometimes they have other names

• Counters

• Shift Registers

• LFSR – Linear Feedback shift Registers

• ...

• Good practice:

• Keep CL and register

storage separate

• Know when you infer

storage elements!

Register Register
Transefer Logic => RTL design

26

Latch vs Flip-flop
«CLK» or «Enable»

input

Active low latch

Falling edge triggered flip-flop

Rising edge triggered flip-flop

Active high latch

• The functions rising_edge and

falling_edge gives a true (0->1 or 1->0)

edge detection

– if CLK’event and CLK = ‘1’ then
reacts on all transitions to ‘1’,

for example U->1

• NB! An incomplete* conditional statement

will be synthesized to a latch (implied

memory)

– *complete defines all outputs for all

conditions of the input variable(s).

(c) 2005-2012 W. J. Dally

D Flip-Flop

• Input: D

• Output: Q

• Clock

• Q outputs a steady value

• Edge on Clock changes Q to be D

• Flip-flop stores state

• Allows sequential circuits to iterate

D Q

^

d q

clk

reset

D Q

^

s s

clk

d q

reset

D-flip-flop with asynchronous reset

28

architecture variabled of DFF is

begin

process(clk, reset) is

variable state;

begin

if reset then

state := '0';

elsif rising_edge(clk) then

state := d;

end if;

Q <= state;

end process;

end architecture;

library ieee;

use ieee.std_logic_1164.all;

entity DFF is

port(

clk, reset, d : in std_logic;

q : out std_logic);

end entity DFF;

architecture signal_and_process of DFF is

begin

process(clk, reset) is

begin

if reset then

q <= '0';

elsif rising_edge(clk) then

q <= d;

end if;

end process;

end architecture;

architecture oneliner of DFF is

begin

q <= '0' when reset else d when rising_edge(clk);

end architecture;

D Q

^

d q

clk

reset

Old style...

This style is mostly what you will find from old code (internet)

Consider other styles to avoid making messy code...

No FF is created unless

a signal is assigned to

the state variable

one-liner... (VHDL 2008 style)

- Compact & readable for simple structures

Variables can be used for

FF instantiation, but...

• reset has priority

• Both clk and reset in

sensitivity lists

– NEVER use ‘all’ for

clocked sensitivity lists

Synchronous D-flip-flop

• Clock has priority

• Only clk in sensitivity list

– (not reset, and definetely not ‘all’)

29

architecture sync_compact of DFF is

begin

process(clk) is

begin

if rising_edge(clk) then

q <= '0' when reset else d;

end if;

end process;

end architecture;architecture synchronous_reset of DFF is

begin

process(clk) is

begin

if rising_edge(clk) then

if reset then

q <= '0';

else

q <= d;

end if;

end if;

end process;

end architecture;

• Old style...

• This style is mostly what you will find from old code

(internet)

• Consider other styles to avoid making messy code...

architecture separate_CL of DFF is

signal next_state : std_logic;

begin

next_state <= '0' when reset else q;

q <= next_state when rising_edge(clk);

end architecture;

• Compact and easy to read

• Slightly more work to maintain if you

change name of the reset signal

• Relatively compact and easy to read

• Require next_state-signals

• Separates combinational logic from sequential storage.

• Can also be achieved using processes and variables

• Forces you to know your storage elements...

Shift registers

30

D Q

11

s

clk

q
10

01

00

a

lin

rin

q

Rin & q(n-2 downto 0)

q(n-1 downto 1) & lin

Shift registers

31

architecture sig of universal_shiftregister is
signal next_q: std_logic_vector(q'range);

begin
q <= (others => '0') when reset else next_q when rising_edge(clk);

with s select next_q <=
a when "11", -- Load a
(q(q'high-1 downto q'low) & lin) when "10", -- Shift left
(rin & q(q'high downto q'low+1)) when "01", -- Shift right
q when others; -- maintain value

end architecture sig;

architecture var of universal_shiftregister is
process(clk, reset) is

variable next_q: std_logic_vector(q'range);
begin

with s select next_q :=
a when "11", -- Load a
(q(q'high-1 downto q'low) & lin) when "10", -- Shift left
(rin & q(q'high downto q'low+1)) when "01", -- Shift right
q when others; -- maintain value

q <= (others => '0') when reset else next_q when rising_edge(clk);
end process;

end architecture var;

-- universal_shiftregister
library ieee;
use ieee.std_logic_1164.all;

entity universal_shiftregister is
generic(n : positive := 8);
port(

clk, reset: in std_logic;
a: in std_logic_vector(n-1 downto 0);
lin, rin: in std_logic;
s: in std_logic_vector(1 downto 0);
q: out std_logic_vector(n-1 downto 0));

end universal_shiftregister;

for read- and maintainability in architectures with multiple processes:

• use variables locally in processes rather than signals

• Variables are less taxing for simulation than signals

‘high and ‘low attributes are used to find the

highest and lowest array index

q'high-1 can be replaced by n-2
q'low can be replaced by 0

Parity calculation in VHDL 2008

• VHDL-2008 adds Unary Reduction Operators of the form:

function "xor" (anonymous: BIT_VECTOR) return BIT;

• Defined for arrays of bit and std_ulogic

• Defined for all binary logic operators:

– AND, OR, XOR, NAND, NOR, XNOR

• Simplifies parity calculation
signal data : std_logic_vector(7 downto 0) ;

signal parity : std_logic;

. . .

parity <= xor data; -- even parity

32

Serial parity check

• Even parity

– parity bit is even (‘0’) when there is

an even number of bits that are ‘1’

– Using even parity bit, each byte

transmission (including parity bit)

should always have even parity.

• OK signal is high when even is ‘0’.

• Odd parity is «not even»

08.02.2022

33

D Q

D Q

par

parcomp

D Q D Q D Q D Q D Q D Q D Q D Q

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

even OK

input

Linear Feedback Shift Register(LFSR)

34

• Made by xor-ing one and one bit that are

connected back to MSB

• Apparently a random counting sequence

– Nicknamed “Pseudo-random generator” since the

counting sequence looks random

• It can be shown that it’s not needed more than

three xor gates to make a random sequence

• Some combinations are better
https://web.archive.org/web/20161007061934/http://courses.cse.tamu.edu/csce680/walker/lfsr_table.pdf

• Used in testing of communication lines and buses

• Used in encryption

https://web.archive.org/web/20161007061934/http:/courses.cse.tamu.edu/csce680/walker/lfsr_table.pdf

Oblig 3, Reccomended reading

35

• Oblig 3:

– Peer review is required for passing

– 2 peer review will be assigned to each

– When in trouble, call the lab-assistant.

– Be polite!

• Subprograms: This lecture

• Clocked processes and statements:

– D&H:

• 14.1-2 p 305-309,

• 16.1-2 p 344-356

Challenge next page..

10 minute breakout

room challenge:

• 5 different architectures...

• Fill in what X is based on the input signals

(in the table)

• How many FF’s are created here?

• What type of circuit is this /

What does it do?

• Raise you hand when finished...

• We will discuss and elaborate after

36

entity XXX is

port (Clock : in Std_logic;

Reset : in Std_logic;

Enable: in Std_logic;

Load : in Std_logic;

Mode : in Std_logic;

Data : in Std_logic_vector(7 downto 0);

X : out Std_logic_vector(7 downto 0));

end;

Enable Load Mode X

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/10-min-challenge/

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v21/10-min-challenge/

entity XXX is

port (Clock : in Std_logic;

Reset : in Std_logic;

Enable: in Std_logic;

Load : in Std_logic;

Mode : in Std_logic;

Data : in Std_logic_vector(7 downto 0);

X : out Std_logic_vector(7 downto 0));

end;

TASK

Fill in what X is based on the input signals

(in the table)

How many FF’s are created here?

8 (only X is updated on clock)

What type of circuit is this / What does it do?

8 bit Binary/Decade counter with load and active low signals and reset

architecture when_else_function of XXX is

constant zero_byte: std_logic_vector(7 downto 0) := "00000000";

signal Q : Unsigned(7 downto 0);

function dec_count(input: Unsigned) return Unsigned is

constant decade_max : Unsigned(3 downto 0) := "1001";

constant zero_nibble: Unsigned(3 downto 0) := "0000";

variable output : unsigned(input'range);
begin

output :=

input + 1 when input(3 downto 0) /= decade_max else

(input(7 downto 4) + 1) & zero_nibble when input(7 downto 4) /= decade_max else

unsigned(zero_byte);

return output;

end function dec_count;

begin

Q <=

unsigned(X) when Enable else

unsigned(Data) when not Load else

unsigned(X) + 1 when not Mode else

dec_count(unsigned(X));

X <= zero_byte when not reset else std_logic_vector(Q) when rising_edge(Clock);

end;

Enable Load Mode X

0 0 0 Data

0 0 1 Data

0 1 0 X+1
(bin)

0 1 1 X+1
(dec)

1 0 0 X

1 0 1 X

1 1 0 X

1 1 1 X

To be revealed in the lecture

