
IN3160 IN4160

System design

Yngve Hafting 2020

Kursinfo

• Siste uke med labveileder er 9.-13.mai.

– Evt oblig-forsøk etter det må enten leveres med video eller avtales

individuelt med retter.

3

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Be able to describe quality

parameters for digital designs

• Be able to
• define digital systems at an architectural level

• define digital system specifications at lower

levels

• Know

• principles for dividing systems into modules

Note: This is not covered in lab exercises.

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Quality in designs = Things to keep in mind

• Simplicity

• Understandability

• Modifiability

• Testability / Verifiability

• Extensibility / Scaleability

• Reusability

• Portability

• Maintainability

• Performance

• Efficiency
5Source: Ricardo Jasinski: «Effective coding with VHDL»

Simplicity

• Simple code

– every sequence of statements follow a logical order

– easy to read and maintain

• Complex code

– full of exceptions and special cases

– ...

• Simplicity requires effort:

– resist quick fixes to «get the job done»
• rather go: «what is it we are trying to achieve..»

• try make every piece fit

• «managing complexity should pay a major role in every technical

decision» in a project
6

Simplicity metrics

• Number of lines and

• Number of statements
– both can be a bit stretched

– correspond well to number of bugs and

how much effort is needed to

understand the code.

• McCabe complexity:
– complexity in nesting

– Preferably < 6

– 6-10: consider refactoring (rewrite but

maintain function)

– >10 => rewrite

• Modularity
– Between extremes:

• 1 big containing all vs

• large number of trivial modules
7

The goal is not to have an exact number for

every criteria, but to keep complexity at a

manageable level.

Understandability

• IRL, Code is usually read more often than written

– => It pays off making it readable for humans

• Reduce complexity

• Use comprehensive layout scheme

• example 2 next slides:

8

architecture _1 of Count is

signal Q: Unsigned(7 downto 0);

begin

process (Clock, Reset)

constant decade_max : Unsigned(3 downto 0) := "1001";

constant zero_nibble : Unsigned(3 downto 0) := "0000";

constant zero_byte : Unsigned(7 downto 0) := "00000000";

variable next_Q : Unsigned(Q'range);
begin

next_Q := Q + 1;

if (Mode = '1') then

if (Q(3 downto 0)) = decade_max then

next_Q(3 downto 0) := zero_nibble;

next_Q(7 downto 4) := Q(7 downto 4) + 1;

if Q(7 downto 4) = decade_max then

next_Q(7 downto 4) := zero_nibble;

end if ;

end if;

end if;

next_Q := Unsigned(Data) when not Load;

next_Q := Q when Enable;

Q <= zero_byte when not reset else next_Q when rising_edge(Clock);

end process;

X <= Std_logic_vector(Q);

end;

entity Count is

port (Clock : in Std_logic;

Reset : in Std_logic;

Enable: in Std_logic;

Load : in Std_logic;

Mode : in Std_logic;

Data : in Std_logic_vector(7 downto 0);

X : out Std_logic_vector(7 downto 0));

end;

Understandability example 1/2...

Enable Load Mode Next X

0 0 - Data

0 1 0 X+1
(binary
counted)

0 1 1 X+1
(decimal
counted)

1 - - X

What are strong and weak points in this design?

Specification of IO and function

architecture _3 of Count is

constant zero_byte: std_logic_vector(7 downto 0) := "00000000";

function dec_count(input: Unsigned) return Unsigned is

constant decade_max : Unsigned(3 downto 0) := "1001";

constant zero_nibble: Unsigned(3 downto 0) := "0000";

variable output : unsigned(input'range);
begin

output :=

input + 1 when input(3 downto 0) /= decade_max else

(input(7 downto 4) + 1) & zero_nibble when input(7 downto 4) /= decade_max else

unsigned(zero_byte);

return output;

end function dec_count;

signal Q : Unsigned(7 downto 0);

begin

Q <=

unsigned(X) when Enable else

unsigned(Data) when not Load else

unsigned(X) + 1 when not Mode else

dec_count(unsigned(X));

X <=

zero_byte when not reset else

std_logic_vector(Q) when rising_edge(Clock);

end;

Understandability example 2/2...

entity Count is

port (Clock : in Std_logic;

Reset : in Std_logic;

Enable: in Std_logic;

Load : in Std_logic;

Mode : in Std_logic;

Data : in Std_logic_vector(7 downto 0);

X : out Std_logic_vector(7 downto 0));

end;

Enable Load Mode Next X

0 0 - Data

0 1 0 X+1
(binary
counted)

0 1 1 X+1
(decimal
counted)

1 - - X

How is this better or worse than the previous example?

Specification of IO and function

Modifiability

• A highly modifiable system

– enables localized changes

– prevents ripple effects – avoid duplicate information

• every feature is written in one location only

– (ie when changing bus width in the top module, all other modules

follow without the need for changing every module separately)

– Each module should have a single responsibility

– Minimize connection between modules

11

Testability (verifiability)

• Components should be testable on their own

– Make testbenches for

• Modules

• Subsystems

• Entire system

– Design modules in ways that are testable

– Design test bench in parallell with module.

12

Extensibility / Scaleability

• The ability to accomodate new functionality or being rescaled

• Use generic and parameterizable modules

– Note– next slide

13

Reusability

• Reusable code can easily be used in other places than it was designed for.

– Using what is tested and proven is often preferred.

• Different levels of reuse:

– Causual/ opportunistic reuse
• using previous design code as template for modification

– Module reuse
• Can work both ways-

– generic modules are harder to design

» use only when you know it will be benificial.

– Formal / Planned reuse
• Using libraries designed for reuse

– requires detailed documentation and testing

– Using Macros or IPs

• Developing a macro generally cost 10x a single use model.
14

Portability

• The ability to be shifted from one environment to another

• The opposite is tool-dependent or technology-dependent.

• To ensure portability

– avoid use of pragmas or metacomments

• (ie compiler directives that are non-VHDL,

often referring to vendor specific components).

– avoid instantiating specific components in high level code

• isolate code that needs specific instantiation in specific modules.

– (typically used for clock networks etc.)
15

Maintainability

• The combination of

modifiability, understandability, extensibility and portability

• Maintenance represent on average 60% of cost in SW system

– => Making code easy to understand, then fix or modify is cruicial.

16

Performance

• Better addressed at higher levels rather than tweaking code

– Address issues in the architecture level rather than in code.

• Keeping the focus at modularity and modifiability

– ensures performance better than focusing on tuning performance.

• Tweaking code can lead to sacrificing portability, maintainability etc.-

– Performance should be adressed when it is known that a module will not be

able to meet performance requirements.

• do not «optimize as you go»

• Normally the compiler will select the best available option

• Measure the performance before resorting to tuning. (synthesis reports)

• Changing technology will change the assumptions you made when tuning.

• Effort put into tweaking parts that are not a part of the critical path is

wasted...
17

Example needless performance tweaking:

• multiplying by 7 tweaked:

performs the same or worse than

in typical compilers...

• Which code is easiest to maintain?

• Which code is most readable

– will most likely conceal bugs?...

18

y <=
(“0” & a & “00”) +
(“00” & a & “0”) +
(“000” & a);

y <= a*7;

Efficiency

• The ratio of work done to the resources used.

• A highly efficient system use less energy or area than a lesser one.

• The same rules as for performance applies:

– Tweaking for efficiency is something you do when

• you have proof that this is what you should do.

– Reports from the synthesis tool will aid you to make such decisions.

19

Architectural vs non-architectural design

20Source: Ricardo Jasinski: «Effective coding with VHDL»

Feature Architectural design Non-architectural design

Quality

attributes

defines system-level constraints and

goals for each module

Does it meet the architectural goals

and constraints?

Scope system–wide decisions descisions are local to component

Behavior defines behavior of a system defines behavior of a component

Structure defines the major blocks of a system and

how they communicate

Must adhere to the given

architectural structure

Data Abstract and conceptual models of data Concrete data models and structures

(specified down to bit level)

Architectural decisions (examples)

• Clock and reset schemes

– Should all the system inputs and outputs be registered?

– What type of storage elements are allowed?

• FFs, latches, RAM,

– Should reset be synchronous or asynchronous?

– How many clock domains do we need?

• how do we communicate across clock domains?

• Computation

– Should computation be done serially, or in parallell?

– Do we need pipelining?

• Modules

– how should the different modules communicate

– Do we use ad-hoc connections or an on-chip bus?

• etc.

21

Architecture specification
should consist of:

• An overview of the system

– Major components and their interactions

– understandable to all participants (new and old) in a project

• High level diagrams

– block diagram: Major blocks, data paths, memories, key signals

– information exchange - not details

– context diagram: how the system interacts with surrondings

• Design decisions

– Decisions backed by rationale behind

• to enable all factors to be considered when making changes

• Mapping between requirements and components

• Constraints

– Resources that are allowed/ disallowed

• design libraries,

• chip families,

• Design principles that all designers should adhere to.

– such as organization in layers
22

There exists standards for architectural

descriptions, such as ISO/IEC/IEEE 42010

«Systems and software engineering-

Architecture description»

System design process (in practice)

• Specification

• Partitioning

• Subsystem interfaces

• Timing

• Module design

• Tuning

24

source: D&H 21. Book uses examples and should be read.

System Design – a process
• Specification

– Understand what you need to build

• Divide and conquer (Partitioning)

– Break it down into manageable pieces

• Define interfaces

– Clearly specify every signal between
pieces

– Hide implementation

– Choose representations

• Timing and sequencing

– Work flow / Data flow between modules

– Overall timing – use a table

– Timing of each interface
• – use a simple convention (e.g., valid – ready)

– Add parallelism or pipelines as needed

• Design each module

• Code

• Verify

Iterate back to the top at any step as needed.

Output / deliverablesOutput / deliverables

Functional description

Output / deliverables

Functional description

Simple Block diagram

Output / deliverables

Functional description

Simple Block diagram

Block diagram with interface description

Output / deliverables

Functional description

Simple Block diagram

Block diagram with interface description

Wave diagrams (for data transfers)

Data path diagrams

Output / deliverables

Functional description

Simple Block diagram

Block diagram with interface description

Wave diagrams (for data transfers)

Data path diagrams

FSM diagrams and tables

• ASM(D)/bubble and state/input-..

Output / deliverables

Functional description

Simple Block diagram

Block diagram with interface description

Wave diagrams (for data transfers)

Data path diagrams

FSM diagrams and tables

• ASM(D)/bubble and state/input-..

HDL files, Schematics, source code

Output / deliverables

Functional description

Simple Block diagram

Block diagram with interface description

Wave diagrams (for data transfers)

Data path diagrams

FSM diagrams and tables

• ASM(D)/bubble and state/input-..

HDL files, Schematics, source code

Testbench reports

Static timing reports

(c) 2005-2012 W. J. Dally

Specification

• Write the user’s manual first

• Putting it on paper means that there are no misunderstandings

about operation

– In practice, this also serves to validate the specification with

users/customers

• Spec includes

– Inputs and outputs

– Operating modes

– Visible state

– Discussion of “edge cases”

• Most of design is done writing English-language documents – with

associated drawings. Coding comes later.

– Don’t start coding until your design is complete.

(c) 2005-2012 W. J. Dally

Divide and Conquer –common themes

• Task

– Divide system into a network of tasks

– One module per task

• State

– Divide system by state

– Separate module for each set of state variables

(each state machine on its own)

• Interface

– Module for each external interface

(c) 2005-2012 W. J. Dally

Some comments on Coding

• Don’t start coding until your design is done.

• Don’t even think about coding until your design is done…

• Code a separate module for every block in your basic block diagram

• Verify each module before moving on to the next module

• Follow good VHDL coding practice…

– Don’t forget it is hardware

• No falling edges, please.. (!)

• Debug the whole system in simulator

– before implementing on hardware

Suggested reading

• DHA

– 21 p 467-477

– Appendix A p 611-621

• Exercise suggestion:

Try make an architectural specification of your oblig 8 system.

- Does this in any way change your perception of this task?

29

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design (processor,

memory and logic on a chip). Lab assignments

provide practical experience in how real design

can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital systems

at different levels of detail

• be able to perform simulation and synthesis of

digital systems.

30

• VHDL

• Digital building blocks

• CL vs clocked logic

• FPGA architecture

• FSMs

• ASM, block diagrams

• Converting a (...) specification to

a design

• Simulation

• Verification

• A taste of

– System on chip

– System design challenges

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

