
IN 3160, IN4160

Timing, pipelining

Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design (processor,

memory and logic on a chip). Lab assignments

provide practical experience in how real design can

be made.

After completion of the course you will:

• understand important principles for design and

testing of digital systems

• understand the relationship between behaviour

and different construction criteria

• be able to describe advanced digital systems at

different levels of detail

• be able to perform simulation and synthesis of

digital systems.

Goals for this lesson:

• Know terms and principles for

• timing

• flow control

• pipelining

21.04.2022 3

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Interface Timing

• How do you pass data from one module to another?

– Open loop

– Flow control

– Serialized

Source: Digital Design using VHDL, Dally, Harting, Aamodt

Always Valid Timing

• Current data always valid
• Measurment data, such as

• Temperature

• Position

• O10 PID control

• Etc.

• Static/ constant data

• Dropping data not critical
• Sequence does not matter

• When crossing clock domains =>
• Synchronization needed to avoid metastability

• Ex. error: 1000 => 0111 being read as 1111 (Metastable MSB)

• Can be passed without flow control
• Signals unchanged from one cycle to the next is valid

• No need to re-send data if there are errors.

Periodically Valid Timing

• Data only valid in predefined intervals
• Ex: an 8 bit shifter has one byte ready every 8th clock cycle.

• Ex: Cryptographic keys that need to be decrypted using the previous key

• Dropping data may be unacceptable

• Flow control is required when

crossing clock domains

Flow Control

• When crossing clock domains:

• Multiplexer / Enable synchronizer
• data valid signal (=data ready..)

• Handshake synchronizer
• Data valid + receiver ready

(= request + acknowledge)

• FIFO synchronizer

• Flow control can also be useful

regardless off CDC

• CDC is considered being taken

care of for the rest of this lecture.

Flow-control types

• Valid – Transmitter (Tx) has data available

• Ready – Receiver (Rx) is able to take data

• Push flow control
– assume Rx always Ready

• Pull flow control
– assume Tx always Valid

Serialization

Sender Receiver

clk

data

frame

frame

a2a3

cycle 1 2 3 4 5 6 7 8

data
16

a1 a0 b2 b1 b0 c2c3 c1 c0b3

9 10 11 12 13

• Frame signals start of new serial frame (here: a packet of 4 words)

• An example of push-flow control.

• Flow control can be at frame granularity or word granularity

• Serialization is often used when dealing with large portions of data
• Further parallelization is not practical.

• Requires some sort of convention on how data is sent

Serialization with word granularity flow control

Sender Receiver

clk

bus

frame

frame

cont

cycle 1

bus
8

addrH addrL data3 data2 data1 data0

ready

ready

data1

2 3 4 5 6 7 8

• Two way flow-control
• Predefined packet size

• New data only when receiver is ready

Packet size

• Often the packet size is given

– ex. UART: usually 8 bit character+(parity)+start/stop bit

• Varying packet sizes requires logic that determines

packet size from data or additional flow control.

• Inside a chip, data is mostly passed in parallell

• Outside a chip it is normal to serialize

(to reduce number of wires, avoid the n-bit problem)

21.04.2022

11

Isochronous timing

• Data is sent with regular time intervals

• Isochronous timing is required when data "must" be read in a

certain timeframe

– Examples:
• Screen output when playing video

• Music or speech

• Ex. USB devices can be set up having isochronous endpoints

which ensures a certain amount of data always can be

transfered from a device, such as a microphone.

– The USB host will then have to set up interrupts to poll the data

from the device regularly.

21.04.2022 12

Interface timing summary

• Always vs Periodically valid

• Flow control (FC)
• Valid: Push

• Ready: Pull

– CDC synchronization may use Flow control

– Periodically valid signals need FC regardless of CDC

• Serialization uses FC

– Frame+ready

– Packet sizes must be defined

• Isochronous timing

– Periodically sending

– For time-critical data, such as AV-streams.

21.04.2022 13

Pipelining content

• Terminology

• Parallelization vs pipelining

• Example: 32 bit ripple carry adder

• Stalls

• Load Balance

• Resource sharing

21.04.2022 14

Pipelining terms

• Throughput (Θ)

– tasks performed per unit time

• MIPS : Millions instructions per second

• FLOPS : Floating point operations per second

• etc

• Latency (T)

– The time needed to complete one task fully

21.04.2022 15

Parallellized vs pipelined

a) Needs 4x HW to achieve compared to solving one task

– Here: Throughput, Θ = 4x

b) Needs registers for each pipeline stage

– can run on a higher clock frequency than a).

– Θ ≤ 4x

21.04.2022 16

Pipelining of 32 bit ripple carry adder

Pipelining:

• Organize into 4

groups of ripple-

carry adders

21.04.2022 17

Without pipelining:

• Assume each FA uses 100ps

=> T = 3200ps = 3.2ns

• Θ = 1operation/(3.2ns) = 0,3125 Gops

• Add registers

between each

group

• Result next page

32 bit ripple carry adder continued

tFA: 100 ps

tReg: 200 ps

tcycle = 8 tFA + tReg

= 800ps + 200ps = 1ns

Latency T = 4*tcycle

= 4ns

Θ = 1Gops

18

Try: What would be the latency and throughput if we use four bits per pipeline stage?
• tcycle = 4tFA + tReg = 400ps + 200ps = 600 ps

• Latency T= 8*tcycle = 600ps*8 = 4,8ns

• Throughput Θ = 1/600ps = 1,67 Gops

(c) 2005-2012 W. J. Dally

Pipelines

IS

A
10 cycles

B
5 or 15 cycles

A B

A B

A B

SA B

ISA B

• Pipelines may have stall and idle functionality...

• When should these happen? How can you prevent them?

• Max latency vs. average latency (absorbing bursts)

Pipeline stalls (1)

• Variable execution time may

occur in larger systems.

– Ex: A floating point operation in

a series of calculations that

mostly are integer based

• Flow control is needed in the

pipeline

– Each stage has its own

data_valid and ready signal

21.04.2022 20

Pipeline stalls (2)

• When a stage is not ready,

either

– the whole pipeline stalls

(previous slide)

– or the results need to be double

buffered to absorb the delay

• (much like an accordion)

• ready signal is buffered upstream

21.04.2022 21

Load balancing

• One or more of the stages

in a pipelining doesnt meet

timing requirement:

=> we can sometimes

• pipeline that stage internally

• parallellize that stage

21.04.2022 22

Variable loads

• Using a FIFO between

stages with variable loads

may ensure throughput

21.04.2022 23

Resource sharing

• When sharing resources

– Use an arbiter to sort who can use the

resource

• a): which stage in a pipeline

• b): which pipeline

• Within a pipeline (a)

– the arbiter (priority encoder) should

prioritize the stage furthest down stream

• to avoid deadlock.

• For b) avoiding starvation

(one being stalled at all times)

is more important.

– => use a toggle or round robin principle..
21.04.2022

24

Summary

• Terms for timing:

– Always or periodically valid

– Flow control

• Push – Pull – Two way

• Simple pipelines:

– adding registers between operations that can be split

• Advanced pipelines (Multi module systems):

– Stalling
• Flow control

• Double buffering

– Load balancing

– Resource sharing
• arbitration

21.04.2022 25

Suggested reading

21.04.2022 26

DHA:

• 22 p479-494

• 23 p497-518

