
IN 3160, IN4160

Verification part 2

Yngve Hafting

Messages

• The «unfair» challenge– how did it og?

• NOTE: Do not delay work until last week in later

assignments...

• Video lectures by Alexander and Roar will be posted

– It is OK to watch early

– QnA session will be held at...

10.02.2022 3

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience

in how real design can be made.

After completion of the course you will:

• understand important principles for

design and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• To write self-testing testbenches
• What is self-testing test benches

• File IO in VHDL

• VHDL attributes used in test benches

• Assertions

• To understand set-up and hold-time

• Be able to check for violations

• To generate test-bench clocks that

emulate real world clocks

Next lesson

• Finite state machines (FSM’s)

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Outline

• Self checking testbenches Concept

• Assertions

• File IO

• Example synthesizable File IO

• Example- self checking test bench

• Set-up / hold time for FFs

• Timing checks

– Relevant attributes for assertions

• Clock generator for testbench

10.02.2022 5

INF3430/443

1

Side 6

Self checking test benches

Input stimuli

Wait

for outputs to

stabilize

Check outputs

against fasit

inputs?

Errors?

Update

error log

YES

NO

Final report

NO

Wait to assign

new stimuli

YES

UUT

Known good
behavioral

model of UUT
(KGBM)

Stimuli
(from file/script/…)

(FIFO)

Waveform
compare

File
(All relevant output)

Console
(Minimum output)

• Two perspectives

• As a system of modules

• As a finite state machine

Useful libraries in test benches

• std.textio from IEEE contains procedures

for reading from and writing to file

• (see next page for package declaration)

• Standard VHDL package declarations can

be found by searching the web

(if you do know their name)

7

8

package TEXTIO is

type LINE is access string;

type TEXT is file of string;

type SIDE is (right, left);

subtype WIDTH is natural;

file input : TEXT open READ_MODE is "STD_INPUT";

file output : TEXT open WRITE_MODE is "STD_OUTPUT";

procedure READLINE(file F: TEXT; L: inout LINE);

procedure READ(L:inout LINE; VALUE: out bit; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit);

procedure READ(L:inout LINE; VALUE: out bit_vector; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit_vector);

procedure READ(L:inout LINE; VALUE: out BOOLEAN; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character);

procedure READ(L:inout LINE; VALUE: out integer; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out integer);

procedure READ(L:inout LINE; VALUE: out real; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out real);

procedure READ(L:inout LINE; VALUE: out string; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out string);

procedure READ(L:inout LINE; VALUE: out time; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out time);

procedure WRITELINE(file F : TEXT; L : inout LINE);

procedure WRITE(L :inout LINE; VALUE : in bit;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in bit_vector;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in BOOLEAN;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in character;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in integer;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in real;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

procedure WRITE(L : inout LINE; VALUE : in string;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in time;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

end TEXTIO;

L (line) is the access (pointer) to

the «current» position in a text

Note: L is inout since it is both

read and set by the procedure

File IO

• Synthesis

– Mostly used for reading ROM content

– Strictly not supported by VHDL-> vendor specific solutions

• Vivado synthesis can only use std_logic or bit, no integers

• Simulation

– Stimuli (input)

– Response (logging)

• Data output

• Errors and other messages

10.02.2022 9

File IO

• Binary files

– Can output whole types (custom types, records / anything)

– Only one type per file

– Tool specific (non portable code)

• Text files

– Can contain anything

– Human readable

– A bit trickier to use (text to type conversions…)

• We will use text files
10.02.2022 10

Example: File IO for synthesis of ROM 1/2

• 4 byte ROM example

– 8 bit data

– 2 bit address

• Libraries
– Remember std.textio

• File name

– Assuming project (work) directory

Yngve Hafting: 10.02.2022

11

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

use STD.textio.all;

entity ROM is

generic(

data_width: natural := 8;

addr_width: natural := 2;

filename: string := "ROM_data_bits.txt"

);

port(

address: in std_logic_vector(addr_width-1 downto 0);

data: out std_logic_vector(data_width-1 downto 0));

end entity;

• Tool specific: Vivado won’t allow for

integers being read from file or strings

– Integer data will have to be converted

to ‘1’ and ‘0’ (without ‘_’).

• Impure:

– Does not always return the same result using

same input parameters (due to file usage)

• File is a text we open in read mode

• Line is “access” type which means

– A pointer to a position in the file

• Readline

– Sets the line pointer to the beginning of the

(first or) next line

• Read

– Sets the data parameter

– Sets the line pointer to the next data

(or end of line)

• Whitespace is delimiter

• What do we get if we set ROM_DATA to a signal?

Yngve Hafting: 10.02.2022 12

type memory_array is array(2**addr_width-1 downto 0) of

std_logic_vector(data_width-1 downto 0);

impure function initialize_ROM(file_name: string)

return memory_array is

file init_file: text open read_mode is file_name;

variable current_line: line;

variable result: memory_array;

begin

for i in result'range loop

readline(init_file, current_line);

read(current_line, result(i));

end loop;

return result;

end function;

--initialize rom:

constant ROM_DATA: memory_array := initialize_ROM(filename);

begin

data <= ROM_DATA(to_integer(unsigned(address)));

end;

Example: File IO for synthesis of ROM 1/2

Combinational implementation

Assertions - «To ensure a model is working with valid inputs»*

• Syntax

• Compilation

– Can be used to check for size mismatches at compile time.

• RTL Simulation

– Compare simulated and expected outcome values (behavior)

• Post Synthesis simulation

– Cheks on signal timing attributes in addition to behavior

• Severity levels

– Failure means «simulation should be stopped»

• Usually when a module cant be initiated correctly, something doesn’t compile…

– Error – when the model provides wrong output or goes into wrong state

– Warning – «unexpected conditions that do not affect the state of the model»

– Note – to report when everything went well (default for report)
10.02.2022

Yngve Hafting

13

assert <boolean condition> -- report when false

report <string>

severity <note, warning, error, failure>;

* Richardo Jasinski «Effective coding with VHDL»

Example Self-checking test bench 1/3

• Libraries

– std.textio ++

• Generics for RTL simulation only

– Post synthesis want these removed

or commented out

• Default values only for stimuli

generated by testbench

– Do not set signals for component outputs!

Yngve Hafting 10.02.2022

14

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

use STD.textio.all;

entity tb_ROM is

end entity;

architecture behavioral of tb_ROM is

constant data_width: natural := 8;

constant addr_width: natural := 2;

component ROM is

generic(

data_width: natural := 8;

addr_width: natural := 2;

filename: string := "ROM_data_bits.txt");

port(

address: in std_logic_vector(addr_width-1 downto 0);

data: out std_logic_vector(data_width-1 downto 0));

end component;

signal tb_data : std_logic_vector(data_width-1 downto 0);

signal tb_address: std_logic_vector(addr_width-1 downto 0) := "00";

begin

DUT: ROM

port map(

address => tb_address,

data => tb_data);

• Why do we put our

procedures in process, not

architecture declaration?

10.02.2022 15

Example Self-checking test bench 2/3

process is

file stimuli_file: text open read_mode is "ROM_stimuli.txt";

variable stimuli_line: line;

variable stimuli_address: integer;

variable stimuli_data: integer;

procedure set_stimuli is

begin

readline(stimuli_file, stimuli_line);

read(stimuli_line, stimuli_address);

read(stimuli_line, stimuli_data);

tb_address <= std_logic_vector(to_unsigned(stimuli_address, addr_width));

end procedure;

file log_file: text open write_mode is "ROM_results_and_log.txt";

variable log_line: line;

procedure check_output is

constant ADR_DIGITS : integer := 2; -- size adress as base 10 number

constant DAT_DIGITS : integer := 4; -- size data as base 10 number

constant SPACER: integer := 1;

begin

--report errors to console

assert (tb_data = std_logic_vector(to_signed(stimuli_data, data_width)))

report ("DATA MISMATCH for address: ", integer'image(stimuli_address))
severity error;

-- report to file

write(log_line, stimuli_address, field => ADR_DIGITS);

write(log_line, stimuli_data, field => DAT_DIGITS + SPACER);

write(log_line, tb_data, field => tb_data'length + SPACER);

writeline(log_file, log_line);

end procedure;

begin

while not endfile(stimuli_file) loop

set_stimuli;

wait for 1 ns;

check_output;

end loop;

file_close(stimuli_file);

file_close(log_file);

report ("Testing finished!");

std.env.stop;

end process;

end architecture;

000 -126

001 23

002 10

003 3

Example Self-checking test bench 3/3

ROM_DATA_bits.txt

10.02.2022 16

ROM_stimuli.txt ROM_results_and_log.txt

00000011

00001100

00010111

10000010

• Synthesizable

– ‘1’ and ‘0’ stored as text

– Only partial VHDL

implementation
• No integers or other types

• No underscores

– Different tool = different issues

• Simulation only

– Any type stored as text

– Full VHDL implementation
• Whitespace >1 = OK

– Good practice:
• Use human readable values

• integers or hex values > binary

• Our output data

– We decide format

– Try to make output that
• is readable and

• understandable

• can be used to check data

0 -126 10000010

1 23 00010111

2 10 00001100

3 3 00000011

17

package TEXTIO is

type LINE is access string;

type TEXT is file of string;

type SIDE is (right, left);

subtype WIDTH is natural;

file input : TEXT open READ_MODE is "STD_INPUT";

file output : TEXT open WRITE_MODE is "STD_OUTPUT";

procedure READLINE(file F: TEXT; L: inout LINE);

procedure READ(L:inout LINE; VALUE: out bit; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit);

procedure READ(L:inout LINE; VALUE: out bit_vector; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit_vector);

procedure READ(L:inout LINE; VALUE: out BOOLEAN; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character);

procedure READ(L:inout LINE; VALUE: out integer; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out integer);

procedure READ(L:inout LINE; VALUE: out real; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out real);

procedure READ(L:inout LINE; VALUE: out string; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out string);

procedure READ(L:inout LINE; VALUE: out time; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out time);

procedure WRITELINE(file F : TEXT; L : inout LINE);

procedure WRITE(L :inout LINE; VALUE : in bit;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in bit_vector;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in BOOLEAN;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in character;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in integer;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in real;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

procedure WRITE(L : inout LINE; VALUE : in string;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in time;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

end TEXTIO;

We used std_logic_vector similar to bit_vector

Post synthesis testbenches

• Post synthesis, post route

– Tools may vary =

• Adaptations may be necessary to compile

– Generics may be gone

– Assertions in synthesized code will be gone

– Timing information will be there

• Much more to test on…

– Signal attributes next slide

• Don’t replace static timing analysis and constraints

– Timing constraints are used for synthesis…

10.02.2022 18

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

19

Signal Attributes 1/2

• These are signal only!

– Each signal maintains these

throughout simulation

– Variables don’t have these

• => v. faster in simulation

• ‘event used in rising_edge()
– (other use not intended for synthesis)

• ‘last…

– Can be useful in testbenches

– Example (oblig 8):

assert en'last_event < LONG_PWM_CYCLE/2

report "PWM is not happening,.."

severity error;

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

20

Signal Attributes 2/2

• May be used to create

simulation logic and tests

– (not synthesizable)

More on attributes

• There are attributes for

– Signals

• (previous slides)

– Types

• Notable:

– ‘image(v) returns a string ex :

– ‘value(s) returns a value (opposite of ‘image)

– Array types/objects (vectors)

– ‘left, ‘right, ‘low, ‘high, ‘range, ‘reverse_range, ‘length,
‘ascending (= false when «downto»), ‘element (== subtype of the vector)

– Entities

• attributes to get compiled name hierarchy- as seen in questa when selecting signals
10.02.2022 21

report("current value is: ", integer'image(my_int));

integer'value(my_str);

clk

input

clk

input

Testcase:

Set-up/hold time in flipflops

• To avoid metastability (neither 0 nor 1),

inputs must be stable some time before

(set-up) and after (hold) clock edge

• Output will return to 0 or 1 after being in

the metastable state, but it’s not given

which one.

– This means; the system is no longer

deterministic.

22

clk

input

Timing and logic check

• The stable attribute can be used to check set-up- and hold times

– Returns true if a signal has been stable >= time given as input parameter

• Assert in an entity =>
checking is being done for all architectures that belongs to this entity.

23

CAUTION! Care should be taken using asserts. Vivado can only support static asserts that do not

create, or are created by, behavior. For example, performing as assert on a value of a constant or a

operator/generic works; however, as asset on the value of a signal inside an if statement will not work.

Clock generator

• Asymmetric low and high time (dutycycle)

24

Example:

Clock with jitter

• Jitter:

– (random) variable delay

– Occurs naturally in all

digital electronic

• math_real.uniform:

– pseud-random number

generator procedure

– uniform distribution

– alters seed values and sets

rnd number 25

procedure UNIFORM(

variable SEED1, SEED2 : inout POSITIVE;

variable X : out REAL);

Suggested reading

• D&H

– File access, ROM

• 8.8 p184-189

– Attributes

• B.8 p 638-640

– Timing constraints:

• 15.1-3 p 328 - 334

• 15.4-6 p 334- 340

10.02.2022 26

