
EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Confidential – For UiO only

The Good, The Bad,
and the Ugly

UiO, 7 April 2022

Confidential – For UiO only

▪ Design Centre for Embedded Systems and FPGA

▪ 1st of January 2021. Extreme ramp up

• January 2021: 1 person

• March 2022 : → 21 persons (SW:6, HW:3, FPGA:10, DSP:1) - And still growing fast…

• Located in Asker, Trondheim (August 2022), Oslo (2022/23), …

▪ Continues the legacy from

• All previous Bitvis technical managers are now in EmLogic

• Verification IP and Methodology provider

• Course provider within FPGA Design and Verification

• Accelerating FPGA Design (Architecture, Clocking, Timing, Coding, Quality, Design for Reuse, …)

• Advanced VHDL Verification – Made simple (Modern efficient verification using UVVM)

▪ Part of TechSeed

• Sister company TechSeed Edge for IoT established in Jan. 2022, - More to come…

UVVM

Where novice designers are being
properly trained in FPGA design

The Good, the Bad, and the Ugly2

Confidential – For UiO only

▪ A Design Centre yields a major competence and experience kick-start

▪ We are 10 FPGA designers – (5 Principals and 2 Seniors)

• The most experienced Design centre in Norway on FPGA

• Major growth and experience also on ESW, HW and DSP

▪ We have experienced designers who want to help novice designers

• Mentors and Sparring partners

▪ We run all fresh designers through

• our FPGA design course & our FPGA verification course

• real cases on how to specify, architect, code, synthesize and verify an FPGA
(Who else does this…)

▪ EmLogic offers significant ownership to all employees

• More and at a lower cost than anybody else in our business

We are recruiting…

The Good, the Bad, and the Ugly3

Uten animasjon. Tas i en annen del

Confidential – For UiO only

Main design problem areas

The Good, the Bad, and the Ugly5

Bad & Ugly code:

▪ Micro architecture

▪ HDL coding style

▪ Naming

➔ Seriously affects:

Quality, Schedule and Cost,

Frequency, Power and Area,

Readability, Modifiability and Risk

Bad & Ugly design

▪ Architecture

▪ Digital design issues

▪ Clock domain crossing

▪ Timing closure

Confidential – For UiO only

Bad names - Abbreviations

The Good, the Bad, and the Ugly6

▪ Non-standard abbreviations

▪ Extremely common

-- Address FIFO is almost empty

afae

af_ae

afifo_ae

addr_fifo_ae

addr_fifo_almost_empty

-- Block enable

blen

bl_ena

block_ena

Abbreviations only ok when:
- clearly defined or
- obvious to anyone

Confidential – For UiO only

▪ Awareness, Awareness, Awareness

▪ Hopefully helps to show that naming is important

• Or in fact VERY important

▪ To really understand that people think differently

• And thus YOU should code for that

▪ To understand that seemingly good names
are not always that good

▪ To get some hints on improvements

NOTE: These are real examples from the industry

Why is showing bad naming important?

The Good, the Bad, and the Ugly7

Confidential – For UiO only

▪ Signals that have
been slightly modified

▪ Extremely common
problem

▪ Readability drastically
reduced

Bad names - Variants of a signal

The Good, the Bad, and the Ugly8

frame_bit_counter <= (actual counter)

frm_bit_counter <= a snapshot when address

field completed

frame_bit_cnt <= at end of previous frame

frm_bit_cnt_tmp <= value held for bit period

- in case of jitter

frame_bit_count <= expected number of bits

Extreme case,
- but lots of cases with 2-3 variants.

They get mixed up all the time....

Confidential – For UiO only

▪ Signal array with N
dimensions
e.g.

• line number (A/B)

• channel number (1-6)

• bit number (N)

• delay number (0-3)

▪ Extremely confusing

Bad names - N dimensions

The Good, the Bad, and the Ugly9

How would you reference the following signals:

1. <my_sig>: line a, channel 3, bit 4?

2. The same signal vector two clock cycles later?

data(1,3,2) -- Line A, Ch 3, Bit 2

data_a(3,2) -- Line A, Ch 3, Bit 2

dout(1,3) -- Line A, Ch 3,

din_a_3(2) -- Line A, Ch 3, Delay 2

Typically lots of signal and variable variants
- Special naming - hopefully structured
- Names refer to different dimensions
They get mixed up all the time....

Confidential – For UiO only

▪ Signal array with N
dimensions
e.g.

• line "number" (A/B)

• channel number (1-6)

• bit number (N)

• delay number (0-3)

▪ Extremely confusing

▪ Use Conventions for delay

▪ Use Enumerated

• And arrays of enumerated

Bad names - N dimensions

The Good, the Bad, and the Ugly10

data(A,CH3,4) -- Line A, Ch 3, Bit 4

data_d2(A,CH3) -- Line A, Ch 3, Delay 2

How would you reference the following signals:

1. <my_sig>: line a, channel 3, bit 4?

2. The same signal vector two clock cycles later?

data(1,3,2) -- Line A, Ch 3, Bit 2

data_a(3,2) -- Line A, Ch 3, Bit 2

dout(1,3) -- Line A, Ch 3,

din_a_3(2) -- Line A, Ch 3, Delay 2

Typically lots of signal and variable variants
- Special naming - hopefully structured
- Names refer to different dimensions
They get mixed up all the time....

Confidential – For UiO only

▪ Name clearly indicates a function, but does something slightly
different.

• 'read' when trigger read is intended.
E.g. one FSM triggering another

• 'crc' when 'crc_error' is intended

• '*_mask' when enable is intended (e.g. for interrupts)

▪ Functionality changed, but name is kept

• 'clk32' when frequency actually changed to 16 MHz

Bad names - Logical mismatch

The Good, the Bad, and the Ugly11

Confidential – For UiO only

▪ Name clearly indicates a function or number,
but not specific enough
E.g. number of bits in a frame

• frame_size Bits, bytes, words,?
Often varying unit in same design.

Bad names - Unknown number unit

The Good, the Bad, and the Ugly12

-- Frame size in number of bits

frame_size

num_bits_frame

frame_size_bits

frame_bits

frame_size_bits

frame_bits

Confidential – For UiO only

▪ Name is obvious to the designer, but...

Bad names - Different understanding

The Good, the Bad, and the Ugly13

-- Number of data bytes in payload

data_in_payload

bytes_in_payload

data_bytes_in_payload

num_bytes_in_payload

What else could it mean?

Confidential – For UiO only

Bad name relations

The Good, the Bad, and the Ugly14

if frame_bit_num = num_bit_frame then

if frame_bit_cnt = C_NUM_BITS_FRAME then

if frame_bit_num = num_bits_frame then

if frame_bit_cnt = num_bits_frame then

Confidential – For UiO only

▪ Signal is "valid" on toggle

▪ Must find alternative name

Bad names - Toggle-signals

The Good, the Bad, and the Ugly15

clk1 @f1

Valid_clk1

DATA_clk1
clk2 @ f2

Registers

Synch. &
Handshake

Temp. storage

Synch. &
Handshake

valid

data

ack

data

valid

ack

t_valid

toggle_valid
valid_on_toggle

Confidential – For UiO only

▪ Differentiate between
variants of number suffixes

Bad names - Number suffix

The Good, the Bad, and the Ugly16

variables:

status

status1 or status_1

status2 or status_2

Typically used for lots of ad-hoc "conventions"

a) For 3 different types of status?

b) For status + pipeline stage 1 and 2

c) For status + synchronized once and twice

d) For status and slightly modified versions

(e.g. masked, enabled, snapshot, etc....

a) creativity : Zero points
Find better names

b) Use fixed conventions
e.g. status_p?

c) Use fixed conventions
e.g. status_s?

d) Terrible practice
Find better names

Confidential – For UiO only

▪ Often confusing whether number N is the Nth or (N+1)th

occurrence.
E.g. whether 13 is the 13th or 14th occurrence.

Numbers - from 0 or 1

The Good, the Bad, and the Ugly17

E.g.

- bit_cnt

- bit_number

- bit_index

- bit_pointer

E.g.

- char_cnt

- char_number

- char_index

Do you know for your code?

Always?

Other designers' code?

Bits vs char vs anything?

channels? events?

strings? node?

- Conventions (e.g. bit_0idx)?
- Special names (e.g. idx vs cnt)
- Comment on non-obvious

Sometimes obvious - Often not

Confidential – For UiO only

Constants for obvious values

The Good, the Bad, and the Ugly18

constant C_ENABLE : std_logic := '1';

constant C_DISABLE : std_logic := '0';

.......

if (......) then

bit_cnt_ena <= C_DISABLE;

constant C_ENABLE : std_logic := '1';

constant C_DISABLE : std_logic := '0';

.......

my_function(param1, C_DISABLE, param3);

Sometimes it improves

readability

What's the point?

type *** is (ENABLE, DISABLE); :.......

my_function(param1, DISABLE, param3);
or use enumerated

Confidential – For UiO only

Numeric constants for non-numeric objects

The Good, the Bad, and the Ugly20

-- (0:Cyclone, 1:Spartan, 2: Igloo

constant C_DEVICE : natural := 2;

.....

if C_DEVICE = 2 then....

type t_device is (cyclone, spartan, igloo);

constant C_DEVICE : t_device := igloo;

.....

if C_DEVICE = igloo then....

Confidential – For UiO only

Simplify complex expressions

The Good, the Bad, and the Ugly25

if 'CPU writes to irq-reg' then

irq := NOT data_in AND irq;

end if;

if 'CPU writes to irq-reg' then

if (data_in = '1') then

irq := '0';

end if;

end if;

Example: Clear an interrupt on writing '1'
(Inside a clocked process)

More readable even

when more lines

if 'CPU writes to irq-reg' and (data_in = '1') then

irq := '0';

end if;

Extremely simple.

Still -

need to stop and think

Confidential – For UiO only

Standard names

The Good, the Bad, and the Ugly26

▪ Use standard names for repeated naming issues:

• addr

• cnt

• ctrl

• ack

• num

• rd/wr or re/we or rena/wena

• rst

• idx

• ptr

• etc….

Confidential – For UiO only

Main Micro architecture issues

The Good, the Bad, and the Ugly27

Lack of awareness

MUST Divide and conquer

▪ Block diagrams drawn only down to the module level

• "More is a waste of time"

• "It's too complex for a block diagram"

• "The code is sufficient as description"

TX

Protocol

TXDPost

process

CPU

Interface
stop

to RXD

Loop

Select

from RXD

Insert

Xon/Xoff

CTSfrom RXD

Strive for Maximum cohesion & Minimum coupling

Confidential – For UiO only

▪ Comment, comment, comment ! (why/what)
• On complex code lines

• On branches/blocks/processes

• On any special solutions

• On required pragmas (or synthesis constraints)

▪ Comment even more. (It is “never” too much) BUT…
• Make relevant comments (why/what, behaviour)

• Comment while coding – not afterwards

Code commenting

The Good, the Bad, and the Ugly28

Confidential – For UiO only

▪ Avoid complex concurrent expressions

▪ Do not combine operations to save code lines

▪ A sequential process with structured multiple if-
statements is normally better than multiple related
concurrent statements.

• Even if 10 lines rather than 3.

▪ Typing your code is the least time consuming task in the
FPGA development.

• A minor part of the design/implementation time.

Compact code is often not efficient

The Good, the Bad, and the Ugly29

Confidential – For UiO only

Compact code is often not efficient

The Good, the Bad, and the Ugly30

No project has ever failed or been delayed due to
too much commenting (relevant VHDL code commenting)

Many projects have failed or been significantly delayed due to
insufficient or improper commenting.

Is this correct ?

Which is the faster to verify and debug ?

How many times do you write it ?
And how many times does someone read it ?

12/18 – 1/4 = 5/12

Which is the faster to write ?

12/18 – 1/4 = 8/12 – 3/12 = 5/12or

No !!! → 5/12

12/18 – 1/4 = 11/24

Confidential – For UiO only

The Good, the Bad, and the Ugly31

The code writing paradox

There seems to be a significant focus on fast code writing.

Yet - code readability and understanding
is far more important…

Writing

Reading &
Understanding

Initial design entryDesign iterationsDesign "walkthrough" meetingSimulation → Debug → IterationsSynthesis → Potential iterations ?Specification changes ?Design review ?If future reuse ?Integration at top levelTop level simulation → Debug → Iterations?Conservative view - for a single complex projectLab-test → Debugging → Iterations

Confidential – For UiO only

The Good, the Bad, and the Ugly32

The code writing paradox

Writing

Reading &
Understanding

Now – what could we do?

Better partitioning/structuringMore structure

Writing for readability

TOTAL:

There seems to be a significant focus on fast code writing.

Yet - code readability and understanding
is far more important…

Confidential – For UiO only

Conclusions

The Good, the Bad, and the Ugly33

▪ Readability and modifiability/maintenance is important

• Speeding up the code writing it self is NOT important

→ Abbreviate only when always immediately understood

→ Invest time in finding good object names

→ Long names are ok. Enumeration is fine

→ Never use a name that doesn't reflect functionality

→ Make User defined types, but do not overdo hierarchical types

→ Divide and conquer at all stages

→ Assure a good structure all the way down

→ Prioritise the reader at all times

EmLogic.no The Norwegian Embedded Systems and FPGA Design Centre

Confidential – For UiO only

The Good, The Bad and the Ugly

34

Guest lecture

Confidential – For UiO only

I publish quite a bit on LinkedIn, so feel free to connect:

https://www.linkedin.com/in/espentallaksen/

Check out articles on us in Magasinet Elektronikk (Norwegian only):

http://viewer.zmags.com/publication/8458c4ab#/8458c4ab/10

http://viewer.zmags.com/publication/8db6a978#/8db6a978/24

http://viewer.zmags.com/publication/b503f5af#/b503f5af/16

https://emlogic.no/

https://emlogic.no/prehistory-short/

Feel free to connect

Important Design and Verification issues35

https://www.linkedin.com/in/espentallaksen/
http://viewer.zmags.com/publication/8458c4ab#/8458c4ab/10
http://viewer.zmags.com/publication/8db6a978#/8db6a978/24
http://viewer.zmags.com/publication/b503f5af#/b503f5af/16
https://emlogic.no/
https://emlogic.no/prehistory-short/

