
IN3160/IN4160	V2021

1/14

Information

Question Question	title Marks Question	type

Information	2021 Document

Basic	VHDL

Question Question	title Marks Question	type

1 Libraries	and	type	conversion 10 Programming

2 Process	and	subprogram 7 Programming

Basic	diagrams	and	tables

Question Question	title Marks Question	type

3 State	diagrams 4 Multiple	Choice

4 State	tables 4 Multiple	Choice

Knowledge	and	principles

Question Question	title Marks Question	type

5 Digital	design	knowledge 20 Multiple	Response

Advanced	design

Question Question	title Marks Question	type

6 Pipelining 10 Programming

Complete	design	and	verification

Question Question	title Marks Question	type

7 ASM	diagram 15 Upload	Assignment

8 State	machine	implementation 15 Programming

9 Test	bench 15 Programming



IN3160/IN4160	V2021

2/14

Information	2021

Written	home	exam	in	IN3160,	IN4160
2021	Spring
Duration:	2021-06-10,	09:00	to	2021-06-10,	13:00	
	
It	is	important	that	you	read	this	cover	page	carefully	before	you	start.	
	
General	information:
	•	Important	messages	during	the	exam	are	given	directly	from	the	course	teacher	on	the	course's	semester
page.	It	is	therefore	important	that	you	check	the	course's	semester	page	regularly.
	
•	Your	answer	should	reflect	your	own	independent	work	and	should	be	a	result	of	your	own	learning	and	work
effort.
	
•	All	sources	of	information	are	allowed	for	written	home	exams.	If	you	reproduce	a	text	from	books,	online
articles,	etc.,	a	reference	to	these	sources	must	be	provided	to	avoid	suspicions	of	plagiarism.	This	also
applies	if	a	text	is	translated	from	other	languages.
	
•	You	are	responsible	for	ensuring	that	your	exam	answers	are	not	available	to	others	during	the	exam	period,
neither	physically	nor	digitally.
	
•	Remember	that	your	exam	answers	must	be	anonymous;	do	not	state	either	your	name	or	that	of	fellow
students.

•	If	you	want	to	withdraw	from	the	exam,	press	the	hamburger	menu	at	the	top	right	of	Inspera	and	select
"Withdraw".	
	
Collaboration	during	the	exam:
It	is	not	allowed	to	collaborate	or	communicate	with	others	during	the	exam.	Cooperation	and	communication
will	be	considered	as	attempted	cheating.	A	plagiarism	control	is	performed	on	all	submitted	exams	where	text
similarities	between	answers	are	checked.	If	you	use	notes	that	have	been	prepared	in	collaboration	with
others	before	the	exam,	this	might	be	detected	in	a	plagiarism	control.	Such	text	similarities	will	be	considered
an	attempt	at	cheating.	
	
Cheats:
Read	about	what	is	considered	cheating	on	UiO's	website.	
	
Multiple	choice	exercises:
There	is	no	penalty	for	answering	wrong,	but	the	amount	of	boxes	that	can	be	checked	cannot	be	greater	than
the	number	of	correct	answers.
	
Digital	hand	drawing	/	file	upload:
You	have	been	given	30	min.	extra	time	for	uploading	files	(e.g.	digital	hand	drawings).	Check	out	how	to
submit	digital	hand	drawings	
	
Contact	information:	User	support	exam
	
Good	luck!

https://www.uio.no/english/studies/examinations/cheating/index.html
https://www.uio.no/english/studies/examinations/submissions/options-for-hand-drawings.html
https://www.mn.uio.no/english/studies/exam/user-support.html


IN3160/IN4160	V2021

3/14

1 Libraries	and	type	conversion

Below	is	a	VHDL	entity	for	a	simple	subtraction	module.
	
entity	subtract	is
		generic(size:	integer	:=	16);
		port(
							a,	b:				in	std_logic_vector(size-1	downto	0);
							result:		out	std_logic_vector(size	downto	0)
		);
end	entity	subtract;
	
Both	"a"	and	"b"	are	unsigned.	"result"	shall	be	in	two's	complement	form,	and	shall	contain	the	result	of	the
calculation	"a-b".

Define	libraries	needed	for	the	entity	and	the	architecture.	
Write	a	synthesizable	architecture	that	implements	the	subtraction	as	described.

Create	a	signed	signal	"i_result"	that	shall	contain	the	result	of	the	calculation
Make	sure	to	convert	all	input	and	output	as	needed	to	complete	the	task.

Fill	in	your	answer	here

	

Maximum	marks:	10

1



IN3160/IN4160	V2021

4/14

2 Process	and	subprogram

Below	is	a	VHDL	entity	for	a	simple	subtraction	module	(the	same	as	in	previous	exercise).
	
entity	subtract	is
		generic(size:	integer	:=	16);
		port(
							a,	b:				in	std_logic_vector(size-1	downto	0);
							result:		out	std_logic_vector(size	downto	0)
		);
end	entity	subtract;
	
Both	"a"	and	"b"	are	unsigned.	"result"	shall	be	in	two's	complement	form,	and	shall	contain	the	result	of	the
calculation	"a-b"	(as	with	the	previous	exercise).

In	this	exercise	you	do	not	need	to	declare	libraries,	they	are	assumed	to	be	as	in	the	previous	exercise.	(No
points	will	be	awarded	for	those	here).

In	both	tasks	(a	and	b)	you	shall	define	a	signed,	intermediate	result,	i_result,	for	the	calculation.	Intermediate
results	shall	be	kept	locally	within	the	process	or	subprogram.	All	code	shall	be	synthesizable.
	
a)		Write	an	architecture	"process_arch"		that	uses	a	process	to	perform	the	calculation.
	
b)	Write	an	architecture	"subprog_arch"	that	uses	a	subprogram	to	perform	the	calculation.
The	subprogram	shall	return	the	calculation	result	as	a	signed.
Fill	in	your	answer	here

	

Maximum	marks:	7

1



IN3160/IN4160	V2021

5/14

3 State	diagrams

Select	the	state	diagram	that	corresponds	to	the	ASM	diagram	above.

Select	one	alternative:



IN3160/IN4160	V2021

6/14

Select	one	alternative:

	

Maximum	marks:	4



IN3160/IN4160	V2021

7/14

4 State	tables

Select	the	state	table	that	corresponds	to	the	ASM	diagram	above.
Select	one	alternative:

	

Maximum	marks:	4



IN3160/IN4160	V2021

8/14

5 Digital	design	knowledge

In	this	exercise,	there	are	several	statements	with	various	precision	level.	Your	task	here	is	to	mark	true
statements.
Statements	that	are	not	always	true,	or	does	not	make	sense	in	the	context	of	digital	design,	shall	be
considered	false.	

Generic	example:	Assume	we	know	Ole	is	the	owner	of	a	blue	hat.
Which	statement	is	true	and	which	is	false:

Ole	wears	a	blue	hat		(False	–	owning	one	does	not	mean	he	wears	it)
Ole	has	a	hat		(True,	he	may	own	several,	but	he	does	at	least	have	one)
Ole	has	hats	(False,	although	he	may	have	several,	we	can	only	confirm	that	he	has	one)

Out	of	the	following	40	statements,	there	are	exactly	10	statements	considered	true,	and	you	will	only	be	able
to	select	10.

Select	one	or	more	alternatives:

A	microcoded	FSM	can	implement	a	Mealy	machine

A	look-up-table	is	digitally	equivalent	to	a	ROM	or	RAM	device

A	mealy	machine	does	not	use	state	registers

Hazards	occur	when	output	changes	more	than	once	after	input	has	changed

Moore	Machines	never	create	hazards

A	brute	force	conqueror	uses	hack	and	slash	for	partitioning	designs

Configurable	logic	blocks	has	four	types	of	AD-converters

SRAM	has	interleaved	memory

Divide	and	conquer	is	bad	practice	in	digital	design.

ROM	can	be	asynchronous

A	crossbar	switch	has	at	least	two	baffles

Formal	verification	cannot	be	achieved

A	behavioral	model	shall	be	synthesizable

A	behavioral	model	shall	not	be	synthesizable

A	mealy	machine	does	use	registers	for	all	outputs

A	built-in	self-test	is	synonymous	with	a	self-testing	testbench

Pipelining	is	typically	implemented	using	RAM

The	selected	statement	in	VHDL	is	always	the	best	option

Sequential	circuits	should	not	be	used	as	FSMs

Flow	control	is	only	used	for	clock	domain	crossing



IN3160/IN4160	V2021

9/14

	

A	brute	force	synchronizer	uses	double	buffering	(double	registers)

VHDL	means	Verilog	Hardware	Description	Service	Language

Synthesizeable	VHDL	is	executed	sequentially

If	we	use	“if”	in	VHDL	we	will	avoid	creating	latches

Combinational	logic	does	not	contain	flip-flops

All	states	are	legal	in	a	microcoded	FSM

A	self-testing	test	bench	can	be	used	for	verification

RAM	is	synchronous

Seven	segment	displays	contain	Linear	Feedback	shift	registers

A	microcoded	FSM	with	a	sequencer	can	be	seen	as	a	microcontroller	or	microprocessor.

Bus	interfaces	does	not	use	control	signals

A	shifter	contains	a	shift	register

It	is	generally	bad	practice	to	use	brute	force	synchronizers	for	multiple	bits

Flip-flop	inputs	should	switch	during	setup	time	to	avoid	metastability

DRAM	cells	must	be	rewritten	after	read

Double	buffering	reduces	delay

A	FIFO	does	not	use	double	buffering	(double	registers)

Periodically	valid	signals	is	better	than	always	valid	signals

Hazards	occur	in	every	digital	design

If	we	use	“if”	in	VHDL	we	will	avoid	creating	hazards

Maximum	marks:	20



IN3160/IN4160	V2021

10/14

6 Pipelining

library	ieee;
use	ieee.std_logic_1164.all;
use	ieee.numeric_std.all;
entity	pipelined	is
	port	(
		clk	:	in	std_logic;
		rst	:	in	std_logic;
		a	:	in	std_logic_vector(7	downto	0);
		b	:	in	std_logic_vector(7	downto	0);
		c	:	in	std_logic_vector(7	downto	0);
		result	:	out	std_logic_vector(9	downto	0);
		start	:	in	std_logic;
		result_valid	:	out	std_logic
		);
end	entity	pipelined;
	
The	pipelined	module	entity	is	described	above.
	
In	this	assignment	a	module	which	calculates	result	=	a+b+c	shall	be	implemented.
In	order	to	meet	timing	closure	at	the	required	frequency,	pipelining	shall	be	used.
All	input	are	synchronized	to	the	clock	signal	clk.
Reset	can	be	either	synchronous	or	asynchronous.
The	implementation	shall	be	synchronous	to	the	clock	signal	clk.
All	output	should	be	driven	by	registers	to	avoid	propagating	hazards.
The	computation	shall	use	unsigned	arithmetic	operation	on	the	operands	a,	b	and	c.
When	the	start	signal	is	high	the	computation	shall	start,	and	the	result_valid	signal	shall	be	high	when	valid
data	is	present	on	the	result	signal.

Implement	the	architecture	for	the	pipelined	module.
Fill	in	your	answer	here

	

Maximum	marks:	10

1



IN3160/IN4160	V2021

11/14

The	timing	diagram	(above)	shows	an	example	of	input	and	output	values	of	the	finite	state	machine
module.
In	this	section,	a	module	using	a	Moore	type	finite	state	machine	shall	be	implemented.
The	state	machine	detects	the	sequence	0xAA	transmitted	on	a	serial	line	(sdata).
After	the	sequence	0xAA	is	detected,	the	following	byte	received	shall	be	set	on	an	output	(dout),	and
a	data	valid	(dvalid)	signal	shall	be	set	high.



IN3160/IN4160	V2021

12/14

7 ASM	diagram

Draw	an	ASM-diagram	which	depicts	the	finite	state	machine	described	in	the	section	document
(above).
Counters	and	shift	registers	does	not	need	to	be	included	in	the	ASM-diagram.

Upload	your	image	file	(.png	or	.jpg)	here.	Maximum	one	file.

All	file	types	are	allowed.	Maximum	file	size	is	2	GB

	

	Select	file	to	upload

Maximum	marks:	15



IN3160/IN4160	V2021

13/14

8 State	machine	implementation

Implement	the	finite	state	machine	module	from	assignment	7	as	a	two-process	(or	three-process)	state
machine	in	synthesizable	VHDL.
All	input	and	output	shall	be	of	type	std_logic	or	std_logic_vector.
The	implementation	shall	use	synchronous	reset.
Fill	in	your	answer	here

	

Maximum	marks:	15

1



IN3160/IN4160	V2021

14/14

9 Test	bench

Implement	a	VHDL	test	bench	for	the	finite	state	machine	module.
Use	0x0F	(«0b00001111»),	0x4A	(«0b01001010»)	and	0x6C	(«0b01101100»)	as	input	values	to	sdata.
The	test	bench	shall	verify	correct	output	on	dout	and	dvalid	and	report	the	results.
In	the	figure,	the	timing	pattern	shows	0x0F	beeing	transferred.
	
Fill	in	your	answer	here

	

Maximum	marks:	15

1


