
IN3160V2021

1/21

Information

Question Question title Marks Question type

Information 2021 Document

Basic VHDL

Question Question title Marks Question type

1 Libraries and type conversion 10 Programming

2 Process and subprogram 7 Programming

Basic diagrams and tables

Question Question title Marks Question type

3 State diagrams 4 Multiple Choice

4 State tables 4 Multiple Choice

Knowledge and principles

Question Question title Marks Question type

5 Digital design knowledge 20 Multiple Response

Advanced design

Question Question title Marks Question type

6 Pipelining 10 Programming

Complete design and verification

Question Question title Marks Question type

7 ASM diagram 15 Upload Assignment

�

IN3160V2021

2/21

8 State machine implementation 15 Programming

9 Test bench 15 Programming

IN3160V2021

3/21

� Information 2021
Written home exam in IN3160, IN4160
2021 Spring
Duration: 2021-06-10, 09:00 to 2021-06-10, 13:00

It is important that you read this cover page carefully before you start.

General information:
 • Important messages during the exam are given directly from the course teacher on the
course's semester page. It is therefore important that you check the course's semester page
regularly.

• Your answer should reflect your own independent work and should be a result of your own
learning and work effort.

• All sources of information are allowed for written home exams. If you reproduce a text from
books, online articles, etc., a reference to these sources must be provided to avoid suspicions of
plagiarism. This also applies if a text is translated from other languages.

• You are responsible for ensuring that your exam answers are not available to others during the
exam period, neither physically nor digitally.

• Remember that your exam answers must be anonymous; do not state either your name or that
of fellow students.

• If you want to withdraw from the exam, press the hamburger menu at the top right of Inspera
and select "Withdraw".

Collaboration during the exam:
It is not allowed to collaborate or communicate with others during the exam. Cooperation and
communication will be considered as attempted cheating. A plagiarism control is performed on all
submitted exams where text similarities between answers are checked. If you use notes that
have been prepared in collaboration with others before the exam, this might be detected in a
plagiarism control. Such text similarities will be considered an attempt at cheating.

Cheats:
Read about what is considered cheating on UiO's website.

Multiple choice exercises:
There is no penalty for answering wrong, but the amount of boxes that can be checked cannot be
greater than the number of correct answers.

Digital hand drawing / file upload:
You have been given 30 min. extra time for uploading files (e.g. digital hand drawings). Check out
how to submit digital hand drawings

Contact information: User support exam

Good luck!

https://www.uio.no/english/studies/examinations/cheating/index.html
https://www.uio.no/english/studies/examinations/submissions/options-for-hand-drawings.html
https://www.mn.uio.no/english/studies/exam/user-support.html

IN3160V2021

4/21

IN3160V2021

5/21

1 Libraries and type conversion
Below is a VHDL entity for a simple subtraction module.

entity subtract is
 generic(size: integer := 16);
 port(
 a, b: in std_logic_vector(size-1 downto 0);
 result: out std_logic_vector(size downto 0)
);
end entity subtract;

Both "a" and "b" are unsigned. "result" shall be in two's complement form, and shall contain the
result of the calculation "a-b".

Define libraries needed for the entity and the architecture.
Write a synthesizable architecture that implements the subtraction as described.

Create a signed signal "i_result" that shall contain the result of the calculation
Make sure to convert all input and output as needed to complete the task.

Fill in your answer here

Maximum marks: 10

1

IN3160V2021

6/21

2 Process and subprogram
Below is a VHDL entity for a simple subtraction module (the same as in previous exercise).

entity subtract is
 generic(size: integer := 16);
 port(
 a, b: in std_logic_vector(size-1 downto 0);
 result: out std_logic_vector(size downto 0)
);
end entity subtract;

Both "a" and "b" are unsigned. "result" shall be in two's complement form, and shall contain the
result of the calculation "a-b" (as with the previous exercise).

In this exercise you do not need to declare libraries, they are assumed to be as in the previous
exercise. (No points will be awarded for those here).

In both tasks (a and b) you shall define a signed, intermediate result, i_result, for the calculation.
Intermediate results shall be kept locally within the process or subprogram. All code shall be
synthesizable.

a) Write an architecture "process_arch" that uses a process to perform the calculation.

b) Write an architecture "subprog_arch" that uses a subprogram to perform the calculation.
The subprogram shall return the calculation result as a signed.
Fill in your answer here

1

IN3160V2021

7/21

Maximum marks: 7

IN3160V2021

8/21

3 State diagrams

Select the state diagram that corresponds to the ASM diagram above.

IN3160V2021

9/21

Select one alternative:

IN3160V2021

10/21

Maximum marks: 4

IN3160V2021

11/21

4 State tables

Select the state table that corresponds to the ASM diagram above.

IN3160V2021

12/21

Select one alternative:

Maximum marks: 4

IN3160V2021

13/21

5 Digital design knowledge
In this exercise, there are several statements with various precision level. Your task here is to
mark true statements.
Statements that are not always true, or does not make sense in the context of digital design, shall
be considered false.

Generic example: Assume we know Ole is the owner of a blue hat.
Which statement is true and which is false:

Ole wears a blue hat (False – owning one does not mean he wears it)
Ole has a hat (True, he may own several, but he does at least have one)
Ole has hats (False, although he may have several, we can only confirm that
he has one)

Out of the following 40 statements, there are exactly 10 statements considered true, and you will
only be able to select 10.

IN3160V2021

14/21

Select one or more alternatives:

A mealy machine does not use state registers

RAM is synchronous

Bus interfaces does not use control signals

Pipelining is typically implemented using RAM

A behavioral model shall be synthesizable

Hazards occur in every digital design

A shifter contains a shift register

Flow control is only used for clock domain crossing

The selected statement in VHDL is always the best option

Double buffering reduces delay

SRAM has interleaved memory

Configurable logic blocks has four types of AD-converters

Divide and conquer is bad practice in digital design.

All states are legal in a microcoded FSM

Sequential circuits should not be used as FSMs

If we use “if” in VHDL we will avoid creating latches

A crossbar switch has at least two baffles

A behavioral model shall not be synthesizable

A brute force conqueror uses hack and slash for partitioning designs

Formal verification cannot be achieved

A built-in self-test is synonymous with a self-testing testbench

DRAM cells must be rewritten after read

Synthesizeable VHDL is executed sequentially

IN3160V2021

15/21

A self-testing test bench can be used for verification

Flip-flop inputs should switch during setup time to avoid metastability

If we use “if” in VHDL we will avoid creating hazards

A look-up-table is digitally equivalent to a ROM or RAM device

A brute force synchronizer uses double buffering (double registers)

A microcoded FSM can implement a Mealy machine

A mealy machine does use registers for all outputs

It is generally bad practice to use brute force synchronizers for multiple bits

Combinational logic does not contain flip-flops

VHDL means Verilog Hardware Description Service Language

Seven segment displays contain Linear Feedback shift registers

A microcoded FSM with a sequencer can be seen as a microcontroller or microprocessor.

A FIFO does not use double buffering (double registers)

Periodically valid signals is better than always valid signals

ROM can be asynchronous

Moore Machines never create hazards

Hazards occur when output changes more than once after input has changed

Maximum marks: 20

IN3160V2021

16/21

6 Pipelining
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity pipelined is
 port (
 clk : in std_logic;
 rst : in std_logic;
 a : in std_logic_vector(7 downto 0);
 b : in std_logic_vector(7 downto 0);
 c : in std_logic_vector(7 downto 0);
 result : out std_logic_vector(9 downto 0);
 start : in std_logic;
 result_valid : out std_logic
);
end entity pipelined;

The pipelined module entity is described above.

In this assignment a module which calculates result = a+b+c shall be implemented.
In order to meet timing closure at the required frequency, pipelining shall be used.
All input are synchronized to the clock signal clk.
Reset can be either synchronous or asynchronous.
The implementation shall be synchronous to the clock signal clk.
All output should be driven by registers to avoid propagating hazards.
The computation shall use unsigned arithmetic operation on the operands a, b and c.
When the start signal is high the computation shall start, and the result_valid signal shall be high
when valid data is present on the result signal.

Implement the architecture for the pipelined module.

IN3160V2021

17/21

Fill in your answer here

Maximum marks: 10

1

IN3160V2021

18/21

The timing diagram (above) shows an example of input and output values of the finite
state machine module.
In this section, a module using a Moore type finite state machine shall be
implemented.
The state machine detects the sequence 0xAA transmitted on a serial line (sdata).
After the sequence 0xAA is detected, the following byte received shall be set on an
output (dout), and a data valid (dvalid) signal shall be set high.

IN3160V2021

19/21

7 ASM diagram
Draw an ASM-diagram which depicts the finite state machine described in the section
document (above).
Counters and shift registers does not need to be included in the ASM-diagram.

�

Upload your image file (.png or .jpg) here. Maximum one file.

All file types are allowed. Maximum file size is 2 GB

� Select file to upload

Maximum marks: 15

IN3160V2021

20/21

8 State machine implementation
Implement the finite state machine module from assignment 7 as a two-process (or three-
process) state machine in synthesizable VHDL.
All input and output shall be of type std_logic or std_logic_vector.
The implementation shall use synchronous reset.
Fill in your answer here

Maximum marks: 15

1

IN3160V2021

21/21

9 Test bench
Implement a VHDL test bench for the finite state machine module.
Use 0x0F («0b00001111»), 0x4A («0b01001010») and 0x6C («0b01101100») as input values to
sdata.
The test bench shall verify correct output on dout and dvalid and report the results.
In the figure, the timing pattern shows 0x0F beeing transferred.

Fill in your answer here

Maximum marks: 15

1

