
IN3160 V2023

1/28

Question Question title Marks Question type

Information IN3160/4160 Information or resources

1 Design Flow 2 Inline Gap Match

2 Digital design knowledge 30 Multiple Choice

3 Diagrams 6 Inline Gap Match

4 ASMD and datapath
diagram 2 Inline Gap Match

Datapath diagram 10 Oral

6 Pipeline implementation 15 Programming

ASM Diagram 10 Oral

8 VHDL Implementation 13 Programming

9 Test bench 12 Programming



5

7

IN3160 V2023

2/28

 Information IN3160/4160
UNIVERSITY OF OSLO
The Faculty of Mathematics and Natural Sciences
Written examination IN3160, IN4160
2023 SPRING
Duration: 2023-06-02, 09:00 to 2023-06-02, 13:00
Permitted aids: none

It is important that you read this front page before you start.

Multiple choice and inline gap matching
There is no penalty or reward for answering wrong in these exercises.

Manually corrected tasks
In addition to the criteria stated in the tasks, answers that are considered best practice will be
rewarded compared to less ideal solutions.

Information about hand drawings(Scantron)
In this question set you have the opportunity to answer with hand drawings on task 5 and 7. Use
the handed out sketch sheets for this. It is possible to use several sheets per assignment. See
instructions on how to fill in the sketch sheets in the link below the assignment overview.

You are not supposed to submit hand drawings for any other questions than task 5 and 7. You will
NOT be given extra time to fill in the information boxes on the sketch sheets (assignment codes,
candidate number, etc.)

Good luck!

IN3160 V2023

3/28

1 Design Flow
Place each token in the numbered slots to form the generic digital design flow sequence.
Note: Each slot will be checked automatically and individually. A sequence offset by one position
will not be rewarded.

 Help

1:

2:

3:

4:

5:

6:

7:

8:

Maximum marks: 2

VHDL design entry Place and route RTL simulation

Static timing analysis Gate level simulation Synthesis

Device programming Specification

IN3160 V2023

4/28

2 Digital design knowledge
Select the best alternative for each of the thirty numbered tasks.

1: What does synthesizable HDL-code define:
Select one alternative:

2: Which of these are not considered programmable logic:
Select one alternative

3: Critical path is...
Select one alternative

A program that will run on an FPGA

Sequential logic

Combinational logic

A testbench

A circuit description

CPLD, Complex Programmable Logic Device

FPGA, Field Programmable Gate Array

PLA. Programmable Logic Array

PAL, Programmable array Logic

MCU, Microcontroller unit

The path through all registers in a module

The path through all registers in a design

The shortest path between two registers

The longest possible chain of combinational logic between two registers

impossible to change

IN3160 V2023

5/28

4: Which of these are not considered an VHDL design entity?
Select one alternative

5: Code written at register transfer level (RTL) describes...
Select one alternative

6: Data flow code describes...
Select one alternative

7: Code written at a structural level describes...

Architecture

ASM-diagram

Entity

Package body

Configuration

registers and the function of the combinational logic in a module

how a simulation shall be run

how registers shall work in a module

how registers are transferred in a module

combinational logic only

How data are transferred between registers

A block diagram

how a simulation flows

Components and their connections

Gates (logical ports), and their connections

IN3160 V2023

6/28

Select one alternative

8: Behavioral code describes...
Select one alternative

9: Generally VHDL is easiest to read when written using...
Select one alternative

10: VHDL simulation is...

Components and their connections

The variance of a component structure

registers and the function of the combinational logic in a module

how a simulation flows

Gates (logical ports), and their connections

VHDL architectures in general

Behavior of a syntheziable module

A simulation or a non-synthesizable component

how registers shall work in a module

registers and the function of the combinational logic in a module

Column layout with underscore_case

Column layout with lowerCamelCase

Endline Layout with UpperCamelCase

Bold layout with ALL_CAPS

Block layout with underscore_case

IN3160 V2023

7/28

Select one alternative

11: A delta delay is...
Select one alternative

12: A D-flipflop...
Select one alternative

13: An System on chip with FPGA contains at least...

Event based

Combinational

Cynical

Cycle based

Logical

used to separate events occuring at the same time in a simulation

the minimum time between two separate events

the shortest nonzero delay in a simulation

the same as an alpha delay, only longer

shorter than an alpha delay

has asynchronous reset

reads indata when clock is high

reads indata when clock is low

has synchronous reset

reads indata on a falling or rising clock-edge

IN3160 V2023

8/28

Select one alternative

14: "SPI" as in the SPI-bus, is an abbreviation for...
Select one alternative

15: An SPI bus can have...
Select one alternative

16: FPGA and ASICs: Which statement is true?

One or more microprocessor or microcontrollers connected to the FPGA-fabric

An AXI-bus and and ARM core

Block RAM and DSP modules

A Zynq 7020 platform

A system of look up tables and flipflops

Sequential peripheral index

Serial Peripheral interface

Serial Protection Interface

Sequential particulate interconnect

Standard periphery interconnect

One master or three slaves

One master and several slaves

Several masters and several slaves

One master and up to three slaves

One master and one slave

IN3160 V2023

9/28

Select one alternative

17: A std_logic signal driven by two signals with values...
Select one alternative

18: What is correct about antifuse based FPGAs?
Select one alternative

19: What is correct about SRAM-based FPGAs?

ASIC have a long development time but the first circuits are cheap to manufacture

FPGA is better than ASIC when dealing with complex designs

FPGA is more suitable than ASIC in products specified to have low power consumption

Prototyping ASIC on FPGA should be avoided because of the difference in coding style

A design implementation requires less chip area when placed on an ASIC rather than an
FPGA

...'L' and '1' will be of the value '1'

...'1' and 'Z' will be of the value 'Z'

...'U' and 'L' will be of the value 'L'

...'L' and 'H' will be of the value 'U'

...'X' and '0' will be of the value '0'

Configuration is saved in the FPGA by making shorts using high voltage.

Antifuse FPGAs can easily change configuration

Antifuse FPGAs uses more area than those based on SRAM

Antifuse FPGAs use more power than the other FPGA circuit technologies

Antifuse FPGAs should not be used in space applications

IN3160 V2023

10/28

Select one alternative

20: State machines: Which statement is true?
Select one alternative

21: State machines: Which statement is true?
Select one alternative

22: Metastability: Which statement is true?

they can be reprogrammed multiple times

they are not suited for prototyping

they are one-time programmable

they are generally a better choice than microcontrollers

they have the disadvantage of low power usage

RAM can be used to create Microcoded state machines

A microcoded FSM will require fewer registers than non-microcoded FSM's

The memory in a microcoded state machine must be one-time programmable

Microcoded FSMs does not require the use of registers

A Microcoded FSM will require more registers than non-microcoded FSMs

Microcoded FSMs are less reliable than other FSMs

Microcode can not be used to create Mealy Machines

Microcode can be used to create Mealy Machines

A sequencer for a microcoded state machine must not contain counters

Microcoded microprocessors must have sequencers

IN3160 V2023

11/28

Select one alternative

23: The n-bit problem: Which statement is true:
Select one alternative

24: FIFO synchronizers has a dual port RAM and...
Select one alternative

25: Flow control between a sender and a receiver can often be achieved using the signals valid
and ready along with the data. Which statement is true?

Reading a metastable signal may yield a high, low or metastable outcome.

Propagating metastability will cause the power consumption in flipflops to drop

metastability never occurs in a well built system

Metastability is the opposite of the probability of stability

Metastability does not occur in sequential logic

Brute force synchronisers can be used with gray coded signals, provided that the receiving
clock domain has the faster clock

Brute force synchronizers causes the n-bit problem

Brute force synchronizers can sometimes be made with a single flipflop, for standalone
signals.

Brute force synchronizers eliminate the n-bit problem

Binary coded signals does not need brute force synchronizers when crossing clock
domains

use brute force for all data bits

uses enable-synchronizers for all data bits.

uses pipelining for all data bits

use gray code counters for read and write pointers. The pointers are brute force
synchronized.

uses a five stage FSM to secure all data

IN3160 V2023

12/28

Select one alternative

26: Data that are always valid...
Select one alternative

27: Isochronous timing is typically used for data such as music, speech and video. Which
statements about data sent using isochronous timing are true?
Select one alternative

28: Pipelining: Which statement is true?

Push flow control assumes the receiver is always ready

The sender is responsible for the ready signal

The receiver is responsible for the valid signal

Pull flow control assumes the receiver is always ready

valid and ready is more important than the data

is granulated

Must use flow control

never change

Uses serialization

Can be passed without flow control

Uses the full bitstream bandwidth

Data-packets uses half the bitstream

Data is sent with regular time intervals

Data is sent with random time intervals

Data is brute force synchronized

IN3160 V2023

13/28

Select one alternative

29: Which of these parameters is generally most important in digital design?
Select one alternative

30: What is the purpose of a fault injection algorithm in a test bench?
Select one alternative

Asynchronous pipelines are superior to sequential pipelines

Pipelining requires more resources than parallelization

Pipelining doubles the throughput of a non-pipelined module

Stalling a pipeline requires some sort of flow control

Pipelining decreases latency in a system, because the clock frequency can be higher

Speed - the ability to perform a task quickly

Portability - The ability to be shifted between environments

Reuseability- the ability to be used in other places than it was designed for

Efficiency- The ability to perform tasks with less energy or area use

Verifiability - the ability to be read and tested

To test the DUT for faulty behavior

To correct other faults in the DUT module

To verify that the test bench is able to report fault conditions

To stir up the development team when they discover there are errors.

To verify that the test bench does not report wrong conditions

Maximum marks: 30

IN3160 V2023

14/28

3 Diagrams
We have a system consisting of three modules; a sender "talker", a receiver "listener" and a
handshake synchronizer, as shown in the block-diagram below:

Data path

Sending
FSM

D

CLK

Q D

CLK

Q

D

CLK

QD

CLK

Q

D

CLK

Q

EN

Receiving
FSM

request

acknowledge

D

CLK

Q

EN

n bit data

Source clock domain Destination clock domain

Handshake synchronizer

The state diagram for the sender and receiver are as follows:

IN3160 V2023

15/28

ready

s_idle

start

request

s_req

ack_sync

s_wait

not ack_sync

F

F

F

s_idle

acknowledge

s_ack

not req_syncF

req_syncF

Below are timing diagrams depicting the process of sending data in the system.

For simplicity, we assume the clocks in each domain use approximately the same frequency, and
for the time being they are synchronous. The start signal is active at all times.

The timing diagrams uses the same name for synchronized and non-synchronized signals. It is
your task is to place the diagrams according to what each module sees. A module does only see
its own in and outputs, e.g. the talker does only see the synchronized version of the acknowledge
signal, and the unsynchronized version of the request signal. The data is shown as valid from the
viewpoint for each module- actual data validity may vary.

Place the correct diagrams in the slots for the talker, sender and the inputs of the
handshake synchronizer. The slots are located below the alternatives.

 Help
The sender (talker) sees:

IN3160 V2023

16/28

The receiver (listener) sees:

The handshake synchronizer sees:

clk

data data1 data2 data3

req

ack

clk

data data1 data2

req

ack

clk

data data1 data2

req

ack

clk

data data1 data2 data3

req

ack

clk

data data1 data2

req

ack

clk

data data1 data2

req

ack

IN3160 V2023

17/28

Maximum marks: 6

clk

data data1 data2

req

ack

clk

data data1 data2

req

ack

clk

data data1 data2

req

ack

clk

data data1 data2

req

ack

IN3160 V2023

18/28

4 ASMD and datapath diagram

idle

sum ← a + b

add

multiplication
overflow?

overflow

y ← sum * c

multiply

do something?
no

yesno

yes

Which of the following datapath-diagrams shows a valid representation of the ASMD diagram
above?

Place the corresponding diagram in the slot at the bottom of this exercise:

 Help
Place the corresponding diagram here:

IN3160 V2023

19/28

do something overflow
add multiply

QD

QD

a

b

c

+

x y

FSM

Data path

IN3160 V2023

20/28

QD QDdo something overflow
add multiply

a

b

c x y

FSM

Data path

+

QD QDdo something overflow
add multiply

QD

QD

a

b

c

+

x y

FSM

Data path

IN3160 V2023

21/28

do something overflow
add multiply

QD

QD

a

b

c

+

x y

FSM

Data path

QDQD

QD

QD

QD QDdo something overflow
add multiply

QD

QD

a

b

c

+

x y

FSM

Data path

QD QD

QD

QD

QD

IN3160 V2023

22/28

Maximum marks: 2

IN3160 V2023

23/28

5 Datapath diagram
In this assignment, a synchronous two stage pipelined module compute_pipelined which
computes (a+b)*c shall be implemented.

The computation shall use signed arithmetic operation.

The inputs (a,b,c) and the output (tdata) shall be standard logic vector. The vector length (for a,b,c
and tdata) shall be specified based on a generic in the entity. The default value shall be 10.
The result shall have the required number of bits.

In additon, the input signal, vdata, determines when the inputs a, b and c have valid data
(i.e. vdata=’1’ when a, b and c are valid).

The output signal tvalid shall be ‘0’ when the output result is not valid and ‘1’ when the output signal
result is valid. When the computed output, tdata, is not valid the value shall be ‘0’.

The pipelined architecture shall allow new data each clock cycle.

Draw a datapath diagram of the of pipelined architecture according to the above description.
The datapath diagram shall show the names and bit widths of the signals.

In this exercise you can answer with digital hand drawing. Use your own sketch sheet
(distributed). See instructions for filling in the sketch sheet in the link below the task bar.

Maximum marks: 10

IN3160 V2023

24/28

6 Pipeline implementation
Implement the architecture from the previous assignment in synthesizable VHDL-2008.

Fill in your answer here

Maximum marks: 15

1

IN3160 V2023

25/28

In this task, a three process Moore type finite state machine (FSM) shall be
implemented.

The FSM works as follows:

The FSM uses an active low reset signal (rstn).
The FSM detects the sequence 0xAA transmitted on a serial line (sdata).
After the sequence 0xAA is detected, the following bytes received shall be set on an
output (tdata), and a data valid (tvalid) signal shall be set high for each valid byte.
If the byte 0xFF is detected, the FSM shall stop setting tvalid, and wait for another
0xAA sequence.

The timing diagram (above) shows an example of input and output values of the FSM
module. In the example, the sdata input is 0xAA 0x0F 0xF2 0xFF.

IN3160 V2023

26/28

7 ASM Diagram
Draw an ASM-diagram which depicts the finite state machine described above.

In this exercise you can answer with digital hand drawing. Use your own sketch sheet
(distributed). See instructions for filling in the sketch sheet in the link below the task bar.

Maximum marks: 10

IN3160 V2023

27/28

8 VHDL Implementation
Implement the FSM as a three process state machine in synthesizable VHDL-2008.

Fill in your answer here

Maximum marks: 13

1

IN3160 V2023

28/28

9 Test bench
Implement a VHDL-2008 (or Python/cocotb) test bench that verifies and reports correct behaviour
according to the task description.

Use the following test vectors: 0xAA 0x0F 0xF2 0xFF 0x02 0x03
Fill in your answer here

Maximum marks: 12

1

