
IN3160 IN4160

Metastability and Clock domain crossing

Yngve Hafting 2021

Messages

• Self-test vs test bench..?

– What is what and when do you use which?

• 27.3: Guest lecture w. Espen Tallaksen

• Next Friday lecture <= Oblig 8 Workshop

– Will not be recorded…

– Both lab and lecture room will be manned.

– Bring your own laptop’s

3

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware design

language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behaviour and different construction

criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• be able to explain

• how metastability occurs

• how to deal with metastability in digital

designs

• be able to calculate
• error frequency for clock domain crossing

• mean time between failure (MTBF) for brute force

synchronizers

• know some common ways to safely

transfer data between clock domains.

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Why care about metastability?

• What is metastability ?

(Suggestions?)

• How often does it occur?

– Yearly?

– Monthly

– Daily?

– Hourly?

– ...

• What do we get when reading

metastable signals?

• Is there anything we can do?

– ...

5

Contamination & Propagation delay

6

• Contamination delay is the

– minimum time from the first input

bit changes to the first output bit

changes.

• Propagation delay is the time

– from the last input bit changes

until the last output bit changes

CLa b

Tcont.

Tprop.

First bit
transition

Last bit
transition

First bit
transition

Last bit
transition

a

b

Flipflops, setup & hold

• A flipflop is 2 latches

– EN on negated clock edge

• the input to the first latch must be ready before

clock edge (Tsetup)

• the first latch may become metastable even if

the input changes shortly after the clock edge

(Thold)

• Transitions or metastability in the first latch will

likely cause the second latch output to become

metastable for an unpredictable amount of time

before it settles at an arbitrary state.

7

D
EN

QD
EN

Q

CLK

D

CLK

Q

=

latched open open metastable

latched open

D

Tsetup TholdTsetup Thold

latched

latched

stable,
unknown

open

metastable
stable,

unknown
open

Latch 1

Latch 2

Clock domain crossing

• Two unsynchronized systems interchanging

data, will cause metastability

• Error probability for an asynchronous signal

into clocked domain:

𝑃𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑠 + 𝑡ℎ
𝑡𝑐𝑙𝑘2

= 𝑓𝑐𝑙𝑘2(𝑡𝑠 + 𝑡ℎ)

• Error frequency for domain crossing:

𝑓𝑒𝑟𝑟𝑜𝑟 = 𝑓𝑐𝑙𝑘1 ∙ 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑓𝑐𝑙𝑘1 ∙ 𝑓𝑐𝑙𝑘2(𝑡𝑠 + 𝑡ℎ)

8

D

CLK

Q

clk1

D

CLK

Q

clk2

clock domain 1 clock domain 2

Ex: 25 MHz and 100MHz, ts = th = 100ps

𝑓𝑒𝑟𝑟𝑜𝑟 = 25𝑀𝐻𝑧 ∙ 100𝑀𝐻𝑧 ∙ 0.1 + 0.1 𝑛𝑠

= 500 ∙ 103𝐻𝑧

= 500𝑘𝐻𝑧

Tsetup Thold Tsetup Thold Tsetup Thold

clock domain 1

clock domain 2

clk1

clk2

Q1

Q2

That is 500.000 times per second...

How do we ensure safe operation?

• There are ways...

– to reduce issues caused by metastability..

– Calculate how often metastability causes failures

• Mean time between failure (MTBF)

– We can often make MTBF long enough to be negligible

9

Brute force synchronizer:

Probability of stability (PS =1/PU)

• The odds of an FF being unstable

after waiting for a certain time

window (𝑡𝑤) when metastable is

given by the probability

distribution function:

𝑃𝑈 = 𝑒
(
−𝑡𝑤
𝜏𝑠

)

• 𝜏𝑠 is the time constant for the
CMOS technology in use

– 𝜏𝑠 is typically in the range of 100ps

10

D

CLK

Q D

CLK

Q
1 2

CLK

asynchronous
input

synchronous
output

Example: next slide

clock domain 1

Tsetup Thold

clk

D

Q1

Tw

Q2

Brute force synchronizer:

Probability of stability (PS =1/PU)

11

D

CLK

Q D

CLK

Q
1 2

CLK

asynchronous
input

synchronous
output

clock domain 1

Tsetup Thold

clk

D

Q1

Tw

Q2

• We have:

• Using a 100 MHz brute force synchronizer, with

𝜏𝑠 = Ts = Th = 100ps, we get

• 𝑇𝑤 = 10𝑛𝑠 − 𝑡𝑠 + 𝑡ℎ =

• 10𝑛𝑠 − 200𝑝𝑠 = 9.8𝑛𝑠 ⇒

• The probability of failure

(propagating metastability) is...

• 𝑃𝑈 = 𝑒(
−9.8

0.1
) =

• 𝑒(−98) = 2,7 ∙ 10−43

𝑃𝑈 = 𝑒
(
−𝑡𝑤
𝜏𝑠

)

MTBF in a brute force synchronizer

• Mean Time Between Failure (MTBF)

= 1/(Metastability frequency):

Metastability frequency = Prob. of failure * error frequency =>

• MTBF for our 25-100 MHZ clock domain crossing:

– PU=2,7 ∙ 10−43, 𝑓𝑒𝑟𝑟𝑜𝑟 = 500𝑘𝐻𝑧 becomes

1

2,7 ∙ 10−43 ∙ 500𝑘𝐻𝑧
=

7,3 ∗ 1039𝑠 = 2,3 ∙ 1032𝑦𝑒𝑎𝑟𝑠

12

D

CLK

Q D

CLK

Q
1 2

CLK

asynchronous
input

synchronous
output

Sek/år = 3600*24*365 = 31 536 000

𝑀𝑇𝐵𝐹 =
1

𝑓𝑒𝑟𝑟𝑜𝑟 ∙ 𝑃𝑈

Summary

• 𝑓𝑒𝑟𝑟𝑜𝑟 = 𝑓𝑐𝑙𝑘1 ∙ 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑓𝑐𝑙𝑘1 ∙ 𝑓𝑐𝑙𝑘2 𝑡𝑠 + 𝑡ℎ

• Der 𝑃𝑒𝑟𝑟𝑜𝑟 =
𝑡𝑠+𝑡ℎ

𝑡𝑐𝑙𝑘2
= 𝑓𝑐𝑙𝑘2(𝑡𝑠 + 𝑡ℎ)

• 𝑃𝑈 = 𝑒
(
−𝑡𝑤
𝜏𝑠

)

• 𝑇𝑤 = 𝑇𝑐𝑦𝑐𝑙𝑒 − (𝑡ℎ𝑜𝑙𝑑 + 𝑡𝑠𝑒𝑡𝑢𝑝)

• 𝑇𝑐𝑦𝑐𝑙𝑒 =
1

𝑓𝑐𝑙𝑘2
, 𝜏𝑠 -settling time is technology dependant

• 𝑀𝑇𝐵𝐹 =
1

𝑓𝑒𝑟𝑟𝑜𝑟∙𝑃𝑈

• Note: we assume 𝑓𝑐𝑙𝑘2 > 𝑓𝑐𝑙𝑘1
13

D

CLK

Q D

CLK

Q
1 2

CLK

asynchronous
input

synchronous
output

Domain 2Domain 1

clock domain 1

Tsetup Thold

clk

D

Q1

Tw

Q2

Brute force synchronizer, "double flopping"

• The goal is to avoid propagating metastability

– It is not to ensure correct data

– brute force synchronizer ensures longest possible settling time

• The n-bit problem:

– Brute force can not be used for multiple bits...

• metastability causes data arrival at different clock edges...

• We need more "protection" than 2FF

14

How to ensure data travels safely between clock

domains

• Handshake

– =only using brute force on control signal

• Use of FIFOs ()...

15

IN3160

Metastability

Synchronization of n-bit data bus

Convergence and divergence in CDC path

IN3160

Metastability; synchronization of n-bit data bus and convergence/divergence17

Outline

• Multiplexer-based and enable synchronizer

• Handshake synchronizer

• FIFO synchronizer

• Memory synchronizer

• Example design with enable synchronizer

• Convergence and divergence in CDC

The N-bit problem

IN3160

18

• Using 2DFF (double flopping) synchronizer for

data wider than 1-bit may lead to functional error.

– Some bits arrive before others

• Use synchronizers based on:

– Multiplexer or enable signal

– Handshake

– FIFO (First In First Out buffer)

A

B

C

D

E

F

G

H

clk1 clk2

A

M

C

M

E

F

M

H

A

B

C

D

E

F

G

H

clk1 clk2

A

B

C

D

E

F

G

H H

0

F

E

1

C

0

A

Multiplexer-based Synchronizer

IN3160

Metastability; synchronization of n-bit data bus and convergence/divergence19

"DATA_READY" is synchronized using a 2DFF synchronizer.

Then the synchronized control signal selects the multiplexer input.

"DATA_READY" arrives with a delay which is sufficient for the data to get stable

The source domain must keep the data constant when the "DATA_READY" signal is active.

"Enable Synchronizer"

IN3160

20

"DATA_READY" from the source domain is synchronized using a 2DFF synchronizer.

The synchronized control signal drives the enable pin of the first flip-flop of the

destination domain.

This is essentially the same solution as the previous,

using built-in ENABLE multiplexer in each DFF rather than an external..

Design Principles

Metastability; synchronization of n-bit data bus and convergence/divergence21

• MUX-select signal or FF-enable input should be driven by

the synchronized control signal

• Data should be held static signal during transfer

• Select/enable synchronizers allows control of the data transfer

for all bits of the bus

– individual bits of the data bus are not synchronized separately
• They cannot be read before (we must assume) they are ready

What if...

• Destination domain is slower? (Longer clock cycles)

• We do not know how long time we should wait when

designing the source domain?

• ... 2 solutions:

– Handshake

– FIFO

22

Handshake Synchronizer

IN3160

When data are available (start):

1. The talker asserts the request signal

2. When the request signal is synchronized by the listener
– It asserts enable and acknowledge when the synchronized request signal arrives

3. When the talker receives the synchronized acknowledge signal
– It deasserts the request signal and waits until it is deasserted

4. The listener deasserts acknowledge when it receives the deasserted request

Data path

Sending
FSM

D

CLK

Q D

CLK

Q

D

CLK

QD

CLK

Q

D

CLK

Q

EN

Receiving
FSM

request

acknowledge

D

CLK

Q

EN

n bit data

Source clock domain Destination clock domain

Handshake synchronizer

ready

s_idle

start

request

s_req

ack_sync

s_wait

not ack_sync

F

F

F

s_idle

acknowledge

s_ack

not req_syncF

req_syncF

Source “RTL Hardware Design Using VHDL” Chapter 16.7-16.8 by P.P.Chu

«talker» «listener»

First In First Out (FIFO) synchronizer

• FIFO is clocked by both sides...

– Details on next slide(s)

• ...Either side can have the fastest clock period

– within the FIFO capabilities

• Data is buffered in a dual port RAM

– Enables burst read and write

– The FIFO maintains pointers to the data

• More complex than a simple handshake

– Details on next slide(s)

• Large buffers may be less suitable for real-time data

– Even small (~4 word) FIFOs can be useful...
25

FIFO

ReaderWriter
wclk rclk

wfull

rready

wdata rdata

wvalid

rempty

Unwrapping the FIFO synchronizer:

Dual port RAM

• RAM is asynchronous..

– Data is latched, not FlipFlop’ed

– Read and write can be done simultanously...

• Data should not be changed while being read

– The FIFO makes sure..

• Separate read- and write- address-pointers are used

– Ensures data out is stable

• Writing cannot be done if the RAM is full

• Reading is prohibited if the RAM is empty

26

DHA8.9

Dual port RAM

waddr raddr

wdata

rdatawrite

Unwrapping the FIFO-synchronizer:

Read and write control

• Write control

– Gray counter

• Counts up on wvalid

– Except when wfull

• Write address is count value

– FIFO is full when write address is one

step behind read address

• Read control

– Gray counter

• Counts up for every rready

– Except when rempty

• Read address is count value

– FIFO is empty when read address is

the current write address.

• The gray code sequence must be

the same in both counters
27

Brute Force Synchronizers

rclk

wclk

FIFO

Write Control Read Control

D

CLK

Q

D

CLK

Q

+1

=
wfull

=

rempty

D

CLK

Q

D

CLK

Q

Dual port RAM

waddr raddr

wdata

rdatawrite

wvalid

wdata

rdata

rready

Gray
counter

rclkwclk

Gray
counter

+

+

-See DHA 29.4

Unwrapping the FIFO-synchronizer:

Gray code / Gray counters

• Gray code changes only one bit at a time

– Example sequences:
• 00-01-11-10 (Quadrature encoder)

• 000-001-011-111-110-100

• 000-001-011-010-110-111-101-100

– the «n-bit problem» of synchronization is not an issue

• Gray code can be used for fault detection

– Check if more than one bit is flipped.
• This is not needed in a FIFO

– we can only have metastability in the last bit being flipped
(assuming all FFs are made with the same technology)

– The read count will never be worse than one behind actual count.

– Ex. Usage: Discovering errors in rotary encoders (Gray/ Quadrature)
28

FIFO that blocks writing and reading when full/empty

- multiple signals are passed between

clock domains (wdata, rdata)

- gray code counters are used to

detect full and empty state;

- signals released by these counters

are synchronized via 2DFF

synchronizers

- the read and write pointers are

passed to the corresponding

address pins of the FIFO;

- the producing clock-domain logic

never writes when the FIFO is full;

- the receiving clock-domain logic

never reads when the FIFO is

empty.
29

FIFO

Write Control Read Control

D

CLK

Q

D

CLK

Q

Brute Force Synchronizers

+1

=
wfull

=

rempty

D

CLK

Q

D

CLK

Q

Dual port RAM

waddr raddr

wdata

rdatawrite

wvalid

wdata

rdata

rready

Gray
counter

rclkwclk

rclk

wclk

Gray
counter

Keeping track of large designs

• Problems that may arise when

– Using combinational logic... (Hazards)

• ...before storing asynchronous input in flipflops

• ...driving output signals

– Using two external signals in a module

• Convergence in clock domain crossing (CDC) path

– Using the same external signal in multiple modules (N-bit problem)

• Divergence in clock domain crossing path

30

Convergence in CDC path problem (=Hazards)

IN3160

31

Convergent logic in the source domain may cause glitch to be passed to the destination clock domain.

Hazards from domain 1 may cause wrong data to be picked up in domain 2.

With this configuration it is impossible to ensure that glitch is not propagated

This may be obscured by multiple layers - if we allow CL in structural modules

(Keep structural modules purely structural!)

D

CLK

Q
CLK1

Data B

D

CLK

Q
Data A

CL1

CL2

D

CLK

QD

CLK

Q
CL3

CLK2

Convergence in CDC path solution:

Always store output values using FFs

IN3160

Solution: Always use registers for (clock domain) output.

D

CLK

Q

CLK1

Data B

D

CLK

Q
Data A

CL1

CL2

D

CLK

QD

CLK

Q
CL3

CLK2

D

CLK

Q

Convergence with synchronized signals problem

= The N-bit signal problem

IN3160

• Two signals synchronized independently may arrive at separate clock cycles,

causing functional errors.

• Both Q1 and Q2 signals from the source domain are synchronized in the CLK2 domain.

• After synchronization these signals converge on combinational logic.
– Different settling times may cause Q1 and Q2 arriving at separate clock cycles

• Solution: next page

D

CLK

QD

CLK

Q

CL

CLK2

D

CLK

QD

CLK

Q

D

CLK

Q

CLK1

Data B

D

CLK

Q
Data A

D

CLK

Q

Convergence in CDC path solution

IN3160

34

• If reconvergence is detected
– Move combinational logic into source clock domain and then pass the resulting signal to the

destination domain.

– (Or use handshake/FIFO for data transfer).

D

CLK

Q

CLK1

Data B

D

CLK

Q
Data A

D

CLK

QD

CLK

Q
CL

CLK2

D

CLK

Q

Divergence in CDC path => N bit problem

IN3160

35

• Output signal from domain 1 is used in two different parts of clock domain 2

– Using two different brute force synchronizers may cause signal to arrive CL1 and CL2 at

different times- which can cause problems later.

– The output signal from the source clock domain should be synchronized

at first (double flopping), then fanned-out to the corresponding destination

logics.

– Ie. For Single signals, synchronize only in one location.

– For multiple signals, use handshake or FIFO.

D

CLK

QD

CLK

QD

CLK

Q

CL2

CL1

CLK2

CLK1

Data

D

CLK

QD

CLK

Q

D

CLK

Q

CL2

CL1

CLK2

CLK1

D

CLK

QD

CLK

Q

Data

Suggested reading

• DHA

– 15.2 p 331

– 28.1- 28.3 p580-585

– 29 p 592-605

• Steve Kilts: Advanced FPGA Design: Architecture,

Implementation and Optimization, 2007,

– chapter 10 (separate pdf).

36

	Slide 2: IN3160 IN4160
	Slide 3: Messages
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Why care about metastability?
	Slide 6: Contamination & Propagation delay
	Slide 7: Flipflops, setup & hold
	Slide 8: Clock domain crossing
	Slide 9: How do we ensure safe operation?
	Slide 10: Brute force synchronizer: Probability of stability (PS =1/PU)
	Slide 11: Brute force synchronizer: Probability of stability (PS =1/PU)
	Slide 12: MTBF in a brute force synchronizer
	Slide 13: Summary
	Slide 14: Brute force synchronizer, "double flopping"
	Slide 15: How to ensure data travels safely between clock domains
	Slide 16: IN3160
	Slide 17: Outline
	Slide 18: The N-bit problem
	Slide 19: Multiplexer-based Synchronizer
	Slide 20: "Enable Synchronizer"
	Slide 21: Design Principles
	Slide 22: What if...
	Slide 23: Handshake Synchronizer
	Slide 25: First In First Out (FIFO) synchronizer
	Slide 26: Unwrapping the FIFO synchronizer: Dual port RAM
	Slide 27: Unwrapping the FIFO-synchronizer: Read and write control
	Slide 28: Unwrapping the FIFO-synchronizer: Gray code / Gray counters
	Slide 29: FIFO that blocks writing and reading when full/empty
	Slide 30: Keeping track of large designs
	Slide 31: Convergence in CDC path problem (=Hazards)
	Slide 32: Convergence in CDC path solution: Always store output values using FFs
	Slide 33: Convergence with synchronized signals problem = The N-bit signal problem
	Slide 34: Convergence in CDC path solution
	Slide 35: Divergence in CDC path => N bit problem
	Slide 36: Suggested reading

