& f -'.”,7 /I ey | ! ‘ ; g p

UiO ¢ Department of Informatics
University of Oslo

IN3160 IN4160

Datapath state machines
Yngve Hafting

UiO ¢ Department of Informatics
University of Oslo

Messages:

* Next two lectures (Friday + Monday) =
— Architecture topics with Roar (KDA)

« Some minor adjustments in content, schedule = same

UiO ¢ Department of Informatics

University of Oslo

In this course you will learn about the design
of advanced digital systems. This includes
programmable logic circuits, a hardware
design language and system-on-chip design
(processor, memory and logic on a chip). Lab
assignments provide practical experience
in how real design can be made.

After completion of the course you will:

understand important principles for
design and testing of digital systems

understand the relationship between
behaviour and different construction criteria

be able to describe advanced digital
systems at different levels of detail

be able to perform simulation and
synthesis of digital systems.

Course Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

Goals for this lesson:

 Know what is
» Datapath state machines (FSMD)

* Know how to divide larger designs and
state machines
* Principles
* Design strategies

Divide and conquer-
Next lesson:

« Diagrams and schematics?

: od hi
+Microcodedprocessors

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Overview

Register operations (example)

What is data path finite state machines (FSMD)?

— Example with code and diagrams

Factoring state machines
— When and how do we split

Next lesson:
— Examples with diagrams and code

UiO ¢ Department of Informatics
University of Oslo

Register example: Simple counter

« Without the use of registers..?
-z <= z+.;
- Not tied to clock => oscillator 0“"‘

« Solution: use registers
—z«—z+1 (ASMD notation)

next_z <= z+!1;

> CLK

z <= next z when rising edge(clk);

UiO ¢ Department of Informatics
University of Oslo

General FSM

« General FSM

— Combinational logic
connected to registers
with feedback

Input

e rpETITION |
State

Combinational

Combinational

UiO ¢ Department of Informatics
University of Oslo

«Datapath» FSM

« Datapath is described by a
function rather than a table
— Counters
— Mathematical operations
— Shift registers
— Etc.

* We usually divide into
control FSM and Datapath

control input

data

Control FSM

control output

StatUST

lcommand

Datapath

((\/*

input

fl

f2

"~

registers
rl, r2,..

D

data

output

> CLK

UiO ¢ Department of Informatics
University of Oslo

«Register operations» in data-path FSM (FSMD)
-and how to deal with it

« Common notations for register operations:

— on clock edge we increment rl rM—r1+1
— on clock edge we update r1 based on a function of register outputs —— r1 «— f(r1,r2)
— on clock edge, set rl to r2+r3 *1M1«—r2+r3

This notation can be confusing, as it implies FsM AT _\ @J
one clock delay if it is put into an ASM chart.) HLESE N

) > CLK
Solution: > _— B
Use ‘-’ for datapath only (not for FSM) b a o el = P
Know that ‘" implies the use of registers that ﬁ > o T S

are not a part of the FSM states

next_r3 r3

UiO ¢ Department of Informatics
University of Oslo

Use of register in decision box

Even if we want this behavior, it is poor JE—

A 4

design... — A4 |
— it seems we do not know what we are || n=0 F=» || | n=1 F—— i n_next=0 H—F—
doing, as with a). 1 1 :

c) Do we need to introduce single | T | T | il | T
cycle wait states?.. I l ———————————— | J;

d) is clear about
— what we want and
— how we will do it ’

a) b) C) d)
We want to do something when nis O... i 1 1 1 N e T :
. I Y i I 4 i S ! A 4 |
a) n will be updated after n=0 check e | Crea | g | e r+a |
. i n_next<= n-1
b) n will be updated after n=1 check... n«n-1 nen-1 | nen-t | T

— =>no doubt on our intention

« Register is updated when the FSM exits current state (#2017 Video)
— NOTE: We “exit” current state each cycle- even if we re-enter...

e => Use solution d)!

10

RTL Hardware Design by P.Chu, Chapter 11

UiO ¢ Department of Informatics

University of Oslo

Processor system

Control output is
memory instructions

FSM decodes
instructions and decides
which part of the
datapath is used

— Pipeline flushes, stalls

etc.

Datapath contains ALU,
pipeline registers etc.

Is a datapath FSM

Read/

write

adresses

Read/
write

Instructions

control input

control output

Control FSM

Memory

Data

statusT lcommand

Datapath
datd input L EE f1 %-

registers
rl, r2,..

dataloutput

11

UiO ¢ Department of Informatics
University of Oslo

Example Factoring state machine with Datapath

accept_coin
(el.mag. actuator)

« Exhange machine
— Green LED ‘ready’/ can accept coins
— Can take a number of up to 100 coins

« Count each coin type %CO‘“-SE“S
Coin type

® 1, 5, 10, 20 NOK |de|tecicor|

* Close intake at maximum (! Green) PO

+ Close intake when counting
* Close intake when no more coins (assume new coin each clock edge) EEE Control system
— Give out the highest possible bills (assuming infinite supply) O%po% 2 o o o
« 50, 100, 200 NOK %I
— Return the least amount of coins sicoencer | | disoonser
+ Use only coin from machine OO::

12

UiO ¢ Department of Informatics
University of Oslo

When state count is nuts...

 Millions of states possible => Cannot make «one» FSM

=> several smaller state_machines or
state machine + data path with registers

13

UiO ¢ Department of Informatics
University of Oslo

Divide into models that can be conquered

 Partition by..?
— State (FSMs vs datapath),
— Task (counters, FSMs,...)
— Interface (entities)

« Entity: « FSM(s) « Datapath

control input c FSM control output
. ——————————————————— ont ro
clk allow coin coin_sens ready, outoL,
..., out500
reset ready Ready
coin_sens - -
In_sens | outOl status = command
amount, count/resetcounters
in01 out05 counter values amount payed
in05 Exchange out10
in10 Machine out20 \4 amount Jpayed
in20 out50
out100 counters
amount
| out200
| out500
Datapath

14

UiO ¢ Department of Informatics
University of Oslo

Detailed datapath

4 counters
— Can they be of the same type?
— Up/ down / reset

«Coins» and «amount»
— Why/ why not registers?

in01

in05

\Y4
count_01

in10

\Y4
count_05

in20

datapath

count_20

amount

15

UiO ¢ Department of Informatics
University of Oslo

Detailed FSM = use ASM (o

A 4

count Pay500 < >100 >_l
« Make sure court ,_ pay200 <>50
.-, . . . "
— all transition descisions

3 y Pay100
are covered < >_> !
<100 pay
— all control output is set

>200

y Pay50

ccept true = down 3

(a
_coin false = right
A
A

idle v

reset_counters

reset_amount
ready

A 4

coin_
sense

count

y'y Inc5

r'y Incl

UiO ¢ Department of Informatics
University of Oslo

Reiterate and refine

* You will likely need a couple of rounds refining before
deciding on VHDL modules
— Entity
— FSM(s)
— Detailed datapath
— ASM diagrams

17

UiO ¢ Department of Informatics
University of Oslo

Example reiteration

« Simpler by using
— Only increments or

decrements for
amount calculation

in01

\4

count_01

in05

A\

count_05

in10

\4

count_10

—_——— e ——_— - —— - — — — —

1 5 10 20 0 1 5 10 20 50 100200

in20

\4

count_20

datapath

amount -

D T
/

-

18

UiO ¢ Department of Informatics
University of Oslo

VHDL modules and hierarchy

« What makes a good hierarchy? « Example modules:
;' f;;‘icwra' top — Toplevel (structural)
' — Control FSM
3. data flow modules
— Complex designs may have several structural layers - Counter(s)
Do not overdo this * One VHDL module, four instances

« What makes good modules..? —
— One type of code within module
* (Structural vs RTL vs Data Flow) -
— One purpose for each module — Amount calculation
— Loosely coupled / few dependencies

* Minimum communication between modules

» Changes can be made within one module without
changing an other

— Little or no duplicate code...
» Use functions, loops, constants etc.

— Scalable v

UiO ¢ Department of Informatics
University of Oslo

clk
- accept coin
reset clk 4
ready
—clk_| accept_coin reset
I O reset ready inc \\ out01
. coin_sens outol dec counter01 7 out0s
coin_sens
in01 out05 accept out10
in01 inos out10! zero out20
s in10 out20 out50
in10] out100
o in20 out50| clk 0
in out
" out100 reset | out200
<ount0 = FSM out200 inc out500
s out500 clk dec | counter05 7
coun
7 reset_counters _reset | | | accept
count10 \ reset_amount zero zero
7\ _accept |
in01
count20 \ clk
7\ _in05 |
reset
amot\nt in1 Ag A
inc
n 0201 dec | counterlO 7
decol amount_calc
dec05 —accenty
zero
decl0
L dec20 |
dec50 clk
dec100 reset
. dec200 inc \
Only |nterna| 500 dec counter20 \ 7
signals are | accent
i Zero
connected in
drawing
20
Exchange Machine

UiO ¢ Department of Informatics

University of Oslo
library IEEE; begin
use TEEE.STD_LOGIC_1164.all; FSM: control FSM
port map(
TO Ievel She” entity exchange_machine is clk => clk,
r) port(reset => reset);
clk, reset : in std_logic;
coin_sens, in@1, in®5, inl@, in20 : in std_logic; count@l: counter
ready, accept_coin : out std_logic; port map(
out@l, out@5, outle, out20 : out std_logic; clk => clk,
out50, outle@, out200, out500 : out std_logic reset => reset);
)
end entity exchange_machine; count®5: counter
port map(
architecture toplevel of exchange_machine is clk => clk,
component control_FSM is reset => reset);
port(
. Filling in the rest should clk, reset : in std_logic); countl@: counter
port map(
be easy once the component counter is clk => clk,
modules are ready port (reset => reset);
clk, reset : in std_logic);
count20: counter
* We need names for component amount_calc is port map(
signals that go between port(clk => clk,
modules. clk, reset : in std_logic); reset => reset);
-- signal decl. for communication between modules amount: amount_calc
port map(
clk => clk,

reset => reset);

end architecture toplevel;

UiO ¢ Department of Informatics

University of Oslo library IEEE;
use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;
entity counter is

generic(
Counter COUNT_WIDTH : natural := 7);

port(
clk, reset : in std_logic;
inc, accept : in std_logic;
dec, zero : in std_logic;
° Processes can be used count : out unsigned(COUNT_WIDTH-1 downto ©));
. . end entity counter;
to sort priority by order
architecture RTL of counter is
— OK when conditions signal next_count : unsigned(count'range);
. begin
are mutually exclusive? -~ registry update
count <= (others => '0') when reset else next_count when rising_edge(clk);
--next count CL
* When-else can do the next_count <=
count + 1 when inc and accept else
i 1l count - 1 when dec else
Same Sortlng exp“CItIy (others => '9') when zero else
— Less need for process.. count;

end arEhitectﬁre RTL;

22

UiO ¢ Department of Informatics
University of Oslo

amount_calc

library IEEE;
use IEEE.STD_LOGIC 1164.all;
use IEEE.numeric_std.all;

entity amount_calc is

generic(
-- 100*20 = 2000 < 2048 = 2~11.
AMOUNT_WIDTH : natural := 11);
port (
clk, reset : in std_logic;

in@1l, in@5, inl@, in20 in std_logic;

zero, accept_coin in std_logic;

dec50, decl0@, dec200, dec500 : in std_logic;

dec20, decl0, dec@5, decol in std_logic;

amount: out unsigned(AMOUNT_WIDTH-1 downto ©));
end entity amount_calc;

Process + if because..
— Use of priority
— Several levels

» Single output can be resolved using when-else only

— Readability/Maintainability would suffer
(..and accept_coin x 4)

architecture RTL of amount_calc is
signal next_amount : unsigned (amount'range);

begin
-- registry update
amount <=
(others => '0') when reset else

next_amount when rising_edge(clk);

-- CL next_amount
process(all) is
begin
-- default statement:
next_amount <= amount;
-- conditional statements (priority doesnt matter)
if zero then
next_amount <= (others => '0");
elsif accept_coin then

next_amount <= amount + when ine@1l;
next_amount <= amount + when in@5;
next_amount <= amount + when inl@;
next_amount <= amount + when in20;
else
next_amount <= amount - when dec500;
next_amount <= amount - when dec200;
next_amount <= amount - when dec100;
next_amount <= amount - when dec50;
next_amount <= amount - when dec20;
next_amount <= amount - when dec10;
next_amount <= amount - when dec@5;
next_amount <= amount - when dec@1l;
end if;

end process;

end architecture RTL;

23

UiO ¢ Department of Informatics
University of Oslo

architecture RTL of control FSM is
type state_type is (idle, count, pay);
signal current_state, next_state : state_type;
signal coins : unsigned(COUNT_WIDTH-1 downto 9);
FS M begin
-- clocked logic
current_state <=
idle when reset else
next_state when rising_edge(clk);

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;

-- CL (moved from datapath)

entity control FSM is coins <= count@l + count®5 + countl® + count20;

generic(
COUNT_WIDTH : natural := 7; next_state_cl: process(all) is
AMOUNT WIDTH : natural := COUNT_WIDTH+4; begin
COIN_LIMIT : natural :=)s -- default value prevents latches
port(next_state <= current_state;

clk, rese : in std_logic;

coin_sens, in@l, in@5, inl@, in20 : in std_logic;
count@l : in unsigned(COUNT_WIDTH-1 downto 0);
count®5 : in unsigned(COUNT_WIDTH-1 downto 0);
countl® : in unsigned(COUNT_WIDTH-1 downto 0);
count20 : in unsigned(COUNT_WIDTH-1 downto 0);
amount : in unsigned(AMOUNT_WIDTH-1 downto 0);

case current_state is
when idle =>
next_state <= count when coin_sens;
when count =>
next_state <= pay when coins > COIN_LIMIT-1;
next_state <= pay when not (in@l1 or in®5 or inl@ or in20);
when pay =>

ready, accept_coin : out std_logic; -- this should be equivalent to all tests listed
outel, out®5, outle, out20 : out std_logic; next_state <= idle when or(amount) = '0';

out50, outleo, out200, out500 : out std_logic; end case?

reset_counters, reset_amount : out std_logic);

- end process;
end entity control_FSM;

-- more next slide..

24

UiO ¢ Department of Informatics

University of Oslo case current_state is

when idle =>

FSM 2/2 reset_counters <= '1';

reset_amount <= "1"';
. ready <= '1';
output_cl: process(all) is when czunt N ’
begin R .
accept coin <= '1' when coins < COIN LIMIT;
-- default values to prevent latching when pgy_—> - ’
reset_counters <= '0';) — —
reset_amount <= '0'; NOTE: with this prioritation :’;sﬂo;:zu;; .- the:hz:tigizgé g
read <= '0'; - - 4
acceyt coin <= . order, the sequence elsif amount >= then outle0 <= '1';
out@:ri - <; o becomes more complex elsif amount >= then out50 <= '1';
outas = 2 than necessary. elsif amount < and amount >= then
out10 = . if count20 > then out20 <= '1';
out20 <= . elsif countlo > then outl0 <= '1';
outse <= . elsif counte5 > then out@5 <= '1';
= 5 _ vqr.,
out100 <= '0'; :ijei?_‘tel <= '1%;
out200 <= '0'; 4
out500 <= " . elsif amount < and amount >= then
’ if countl0 > 0 then outlo <= '1';
elsif count®5 > 9 then out®5 <= '1';
* Readability? elje_zutel <= "1';
. . . end if;
— What would happen if we mixed next_state CL into the elsif am;unt < and amount >= 5 then
output CL? if count@5 > © then out@5 <= '1';
: else outol <= '1"';
» Default values for all signals end if: ’
B
— =>no latches elsif amount < 5 and amount >= 1 then
« No need for else after when or if 3“’??1 <=1
. . end if;
since default clause will apply. end case:
J

Use «if» to sort priorities, end process;

when having multiple conditions and multiple outputs

— That are depending on each other.. end architecture RTL;

UiO ¢ Department of Informatics
University of Oslo

Recap ASMD

« D for datapath ASM
* ‘«—’in a Mealy box?
— OK because the register
is a part of the data path
(and not the FSM itself)
« Can we go without ‘«" ?
« Should we?

true = down
false = right
A =amount
idle v
reset_counters
reset_amount
ready
v
coin_
pay) 4 sense
count
count
v
A>500
v
coins A2200
<100 pay h 4
Out500
acasoo) | A=100 >_l
\ 4 Y
. Out200
(accept_coin) 7'y (A& A-200) Il < A>50 >_l
Out100 A>20,
h 4 4 A < A-100 v #20>0
C 2 Outs0 A210,
4 A & A-50 #10>0
v Out20
4 A< A-20
Inc20 4
A & A+20 Out10
A A& A-10

> pay

Inc10 1
A & A+10
h 4
Inc5

4 A & A+5

A 4

Incl

4 A& A+l

idle

UiO ¢ Department of Informatics —
University of Oslo ﬁ“? l)‘?"l‘l",‘l()NJ
. . . oy
«Register operations» in data-path PSKF(ESMD)
-and how to deal with it

Common notations for register operations:

— on clock edge we update rl based on a function Merl+1
of register outputs 1 «—f(r,r2)
— on clock edge we increment r1, Mer2+r3
— on clock edge, setrlto rl+r2
This notation can be confusing, as it implies
one clock delay if it is put into an ASM chart. |™ — @J
Solution: — T
— Use ‘"’ for datapath only (not for FSM) P 1)
— Know that ‘" implies the use of additional N s Y “
registers ﬁ ° 9 " 9
> CLK > CIK

next_r3 r3
D

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

« DAH:
— 16 p 345-371
— 17 p 375 - 393

e Hva na? <=

next _page when time left > 15 min else questions ..t

?

28

UiO ¢ Department of Informatics
University of Oslo

Non-clock Edge detection

 We do not want to have registers triggered
by other signals than clock
— FPGA: messes up clock distribution networks
— Synthesis will not understand timing
— Will easily lead to non-synthesizable code

e Solution

— Compare incoming signal with registered signal

REG:
sig <= next_sig when rising edge(clk);

CL:
my edge <= '1' when sig /= next sig else '0';
my rising <=

-- <use my edge or my rising in combination with other signals> --

'l" when (sig = '0') and (next sig = "'l") else 'O’

new_value my_output

my_sig

BAD IDEA: my output <=
new value when rising edge(my_ sig)
else old value;

NO SYNTH: process(my sig) is
begin
if rising edge(my_sig) then
if rising edge(clk) then
<do something>
end if;
end if;
end process NO SYNTH;

A\ my_edge
next_si Si
_SIg D Q g

> CLK
my_rising

—C

next_si si
_SIg D Q g

> K

29

UiO ¢ Department of Informatics
University of Oslo

Pushbutton register storage

« Can be seen as a single state storage operation

* With default value « Without default « As a register operation
default: reset, reset, reset,
next_ouput <= output | output<=0 output<=0 output <=0

]
, state y : state ¢y 1
H]
]
i | output <= next_out ! ! '
'] ! :
1 : : 1
N]
]
! v '] h 4 !
'] !]
_]
! enable ' | enable Fa
1 : : 1
H]
T] !
| T |
]
! v y | I '
| ! :
: next_out <= input next_out <= output ' : output&input
! ! !
_______ +____________+______a LI I
> 30

UiO ¢ Department of Informatics

A . architecture single process of my reader is
University of Oslo begin
process (clk, reset) is

begin

Pushbutton register storage

ouput <= (others => '0');

(not in Oblig 6 2021) o i e

ouput <= input when enable;

end if;
end process;
« All storage should end architecture;
be on clock edge!
e Reset ShOUId have proce_ss(all) is architecture two statement of my reader is
.. be91 signal next out: std_logic_vector (7 downto 0);
top priority when if . begin
nput; .
process (clk, reset) is
asynchronous R . begin
— Synchronous reset: en ' if resit:h‘(*nth o
+ top priority after clock edge. end process; onput o7 fomhers -)

elsif rising edge(clk) then
ouput <= next out;
end if;
end process;
library IEEE; b

use IEEE.STD LOGIC 1164.all;

- K
ntil m r r 1 .
entity my reade S Jnext out <= input when enable else output;
port (_
1k t . td logi -- CL alternative
clk, reset : in s ogic; .
. — g with enable select next out <=

enable : in std logic; . - -

. . T input when '1°,

input : in std_logic_vector (7 downto 0);

output when others;
output : out std_logic_vector (7 downto 0); P
)i . end architecture FSM style; 31
end entity my reader; -

	Slide 2: IN3160 IN4160
	Slide 3: Messages:
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Overview
	Slide 6: Register example: Simple counter
	Slide 7: General FSM
	Slide 8: «Datapath» FSM
	Slide 9: «Register operations» in data-path FSM (FSMD) -and how to deal with it
	Slide 10: Use of register in decision box
	Slide 11: Processor system is a datapath FSM
	Slide 12: Example Factoring state machine with Datapath
	Slide 13: When state count is nuts…
	Slide 14: Divide into models that can be conquered
	Slide 15: Detailed datapath
	Slide 16: Detailed FSM = use ASM
	Slide 17: Reiterate and refine
	Slide 18: Example reiteration
	Slide 19: VHDL modules and hierarchy
	Slide 20: Top
	Slide 21: Toplevel shell
	Slide 22: Counter
	Slide 23: amount_calc
	Slide 24: FSM
	Slide 25: FSM 2/2
	Slide 26: Recap ASMD
	Slide 27: «Register operations» in data-path FSM (FSMD) -and how to deal with it
	Slide 28: Suggested reading
	Slide 29: Non-clock Edge detection
	Slide 30: Pushbutton register storage
	Slide 31: Pushbutton register storage (not in Oblig 6 2021)

