
IN3160 IN4160

Datapath state machines
Yngve Hafting

Messages:

• Next two lectures (Friday + Monday) =

– Architecture topics with Roar (KDA)

• Some minor adjustments in content, schedule = same

3

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience

in how real design can be made.

After completion of the course you will:

• understand important principles for

design and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Know what is
• Datapath state machines (FSMD)

• Know how to divide larger designs and

state machines

• Principles

• Design strategies
• Divide and conquer-

Next lesson:

• Diagrams and schematics?

• Microcoded state machines

• Microcoded processors

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

5

Overview

• Register operations (example)

• What is data path finite state machines (FSMD)?
– Example with code and diagrams

• Factoring state machines

– When and how do we split

• Next lesson:

– Examples with diagrams and code

Register example: Simple counter

• Without the use of registers..?
– z <= z+1;

• Not tied to clock => oscillator

• Solution: use registers
– z ← z + 1 (ASMD notation)

6

=

next_z <= z+1;

z <= next_z when rising_edge(clk);

=
z

z

General FSM

• General FSM

– Combinational logic

connected to registers

with feedback

7

Combinational
logic

State
D

CLK

Q
Input

D

CLK

Q
Combinational

logic

MOORE

MEALY

«Datapath» FSM

• Datapath is described by a

function rather than a table

– Counters

– Mathematical operations

– Shift registers

– Etc.

• We usually divide into

control FSM and Datapath

8

Control FSM

D

CLK

Q

f2

f1

control input control output

status command

Datapath

data input data output

registers
r1, r2, ...

«Register operations» in data-path FSM (FSMD)

-and how to deal with it
• Common notations for register operations:

– on clock edge we increment r1

– on clock edge we update r1 based on a function of register outputs

– on clock edge, set r1 to r2+r3

9

r1 ← r1 + 1

r1 ← f(r1,r2)

r1 ← r2 + r3

FSM

D

CLK

Q

Output
CL

State
CL

D

CLK

Q

D

CLK

Q

D

CLK

Q

next_r1

next_r2

next_r3

r1

r2

r3

+1

+

f(r1,r2)
CL

This notation can be confusing, as it implies

one clock delay if it is put into an ASM chart.

Solution:
Use ‘←’ for datapath only (not for FSM)

Know that ‘←’ implies the use of registers that

are not a part of the FSM states

Use of register in decision box

10

RTL Hardware Design by P.Chu, Chapter 11

a) b) c) d)

• Register is updated when the FSM exits current state (≠2017 Video)

– NOTE: We “exit” current state each cycle- even if we re-enter…

• => Use solution d)!

We want to do something when n is 0...

a) n will be updated after n=0 check

b) n will be updated after n=1 check…

• Even if we want this behavior, it is poor

design…

– it seems we do not know what we are

doing, as with a).

c) Do we need to introduce single

cycle wait states?..

d) is clear about

– what we want and

– how we will do it

– => no doubt on our intention

Processor system is a datapath FSM

• Control output is

memory instructions

• FSM decodes

instructions and decides

which part of the

datapath is used

– Pipeline flushes, stalls

etc.

• Datapath contains ALU,

pipeline registers etc.

11

Control FSM

D

CLK

Q

f2

f1

control input control output

status command

Datapath

data input data output

registers
r1, r2, ...

Memory

Data

Instructions

Read/
write

adresses

Read/
write

Example Factoring state machine with Datapath

• Exhange machine

– Green LED ‘ready’/ can accept coins

– Can take a number of up to 100 coins
• Count each coin type

• 1, 5, 10, 20 NOK

• Close intake at maximum (! Green)

• Close intake when counting

• Close intake when no more coins (assume new coin each clock edge)

– Give out the highest possible bills (assuming infinite supply)

• 50, 100, 200 NOK

– Return the least amount of coins
• Use only coin from machine

12

coin_sens

accept_coin
(el.mag. actuator)

Coin type
detector

Bill
dispenser

Coin
dispenser

Control system

When state count is nuts…

• Millions of states possible => Cannot make «one» FSM

=> several smaller state_machines or

state machine + data path with registers

13

Divide into models that can be conquered

• Entity:

14

• Datapath

Ready

Pay

Count
Exchange
Machine

clk

reset

in01

in05

in10

in20 out50

out100

out200

out500

ready

out01

out05

out10

out20

allow_coin

coin_sens

Control FSM
control input control output

status =
amount,

counter values

command =
count/reset counters

amount payed

Datapath

coin_sens ready, out01,
 , out500

amount_payed

counters
+ - amount

• Partition by..?

– State (FSMs vs datapath),

– Task (counters, FSMs,…)

– Interface (entities)

• FSM(s)

Detailed datapath

• 4 counters

– Can they be of the same type?

– Up/ down / reset

• «Coins» and «amount»

– Why/ why not registers?

15

datapath

count_01

count_05

count_10

count_20

in01

in05

in10

in20

+ coins +

x5

x10

x20

-

1 5 10 20 50 100 2000

amount

Detailed FSM = use ASM

• Make sure

– all transition descisions

are covered

– all control output is set

16

true = down
false = right

reset_counters
reset_amount

ready

idle

coin_
sense

count

pay

 200

 100

 50

 500

 20

#20
>0

 10

Pay500

Pay200

Pay100

Pay50

Pay20
dec20

Pay10
dec10

#10
>0

 5

#5
>0

 1

Pay5
dec5

Pay1
dec1

idle

count

count

20

10

5

1

Inc20

Inc10

Inc5

Inc1

pay

coins
<100

accept
_coin

pay

Reiterate and refine

• You will likely need a couple of rounds refining before

deciding on VHDL modules

– Entity

– FSM(s)

– Detailed datapath

– ASM diagrams

17

Example reiteration

• Simpler by using

– Only increments or

decrements for

amount calculation

18

datapath

in01

in05

in10

in20

+
coins -

1 5 10 20 50 100 2000

amount

1 5 10 20

count_01

count_05

count_10

count_20 +

amount_calc

Move to FSM entity

VHDL modules and hierarchy

• Example modules:

– Toplevel (structural)

– Control FSM

– Counter(s)
• One VHDL module, four instances

– Datapath..?
• (could be within toplevel…)

• Datapath CL..?

– Amount calculation

19

• What makes a good hierarchy?

1. Structural top

2. RTL

3. data flow modules

– Complex designs may have several structural layers

• Do not overdo this

• What makes good modules..?

– One type of code within module

• (Structural vs RTL vs Data Flow)

– One purpose for each module

– Loosely coupled / few dependencies

• Minimum communication between modules

• Changes can be made within one module without

changing an other

– Little or no duplicate code…

• Use functions, loops, constants etc.

– Scalable

Top

20

Exchange Machine

FSM

ready

accept_coin

out50

out100

out200

out500

out01

out05

out10

out20

clk

reset

in01

in05

in10

in20

coin_sens

count01

7

count05

7

count10

7

count20

7

reset_counters

reset_amount

11

amount

out50

out100

out200

out500

ready

out01

out05

out10

out20

accept_coin
clk

reset

in01

in05

in10

in20

coin_sens

counter20
inc

clk

reset

dec

zero

7

accept

counter10
inc

clk

reset

dec

zero

7

accept

counter05
inc

clk

reset

dec

zero

7

accept

counter01
inc

clk

reset

dec

zero

7

accept

amount_calc

clk

reset

in01

in05

in10

in20

zero

11

dec50

accept

dec100

dec200

dec500

dec20

dec10

dec05

dec01

Only internal

signals are

connected in

drawing

Toplevel shell

• Filling in the rest should

be easy once the

modules are ready

• We need names for

signals that go between

modules.

21

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity exchange_machine is
port(

clk, reset : in std_logic;
coin_sens, in01, in05, in10, in20 : in std_logic;
ready, accept_coin : out std_logic;
out01, out05, out10, out20 : out std_logic;
out50, out100, out200, out500 : out std_logic
);

end entity exchange_machine;

architecture toplevel of exchange_machine is
component control_FSM is
port(

clk, reset : in std_logic);

component counter is
port(

clk, reset : in std_logic);

component amount_calc is
port(

clk, reset : in std_logic);

-- signal decl. for communication between modules

begin
FSM: control FSM
port map(

clk => clk,
reset => reset);

count01: counter
port map(

clk => clk,
reset => reset);

count05: counter
port map(

clk => clk,
reset => reset);

count10: counter
port map(

clk => clk,
reset => reset);

count20: counter
port map(

clk => clk,
reset => reset);

amount: amount_calc
port map(

clk => clk,
reset => reset);

end architecture toplevel;

Counter

• Processes can be used

to sort priority by order

– OK when conditions

are mutually exclusive?

• When-else can do the

same sorting explicitly

– Less need for process..

22

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;

entity counter is
generic(

COUNT_WIDTH : natural := 7);
port(

clk, reset : in std_logic;
inc, accept : in std_logic;
dec, zero : in std_logic;
count : out unsigned(COUNT_WIDTH-1 downto 0));

end entity counter;

architecture RTL of counter is
signal next_count : unsigned(count'range);

begin
-- registry update
count <= (others => '0') when reset else next_count when rising_edge(clk);

--next_count CL
process(all) is
begin

-- default value
next_count <= count;
-- conditional update:
next_count <= count + 1 when inc and accept;
next_count <= count - 1 when dec;
next_count <= (others => '0') when zero;

end process;
end architecture RTL;

next_count <=
count + 1 when inc and accept else
count - 1 when dec else
(others => '0') when zero else
count;

amount_calc

• Process + if because..

– Use of priority

– Several levels

• Single output can be resolved using when-else only

– Readability/Maintainability would suffer

(…and accept_coin x 4)
23

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

entity amount_calc is

generic(
-- 100*20 = 2000 < 2048 = 2^11.

AMOUNT_WIDTH : natural := 11);

port(

clk, reset : in std_logic;

in01, in05, in10, in20 : in std_logic;

zero, accept_coin : in std_logic;

dec50, dec100, dec200, dec500 : in std_logic;

dec20, dec10, dec05, dec01 : in std_logic;

amount: out unsigned(AMOUNT_WIDTH-1 downto 0));

end entity amount_calc;

architecture RTL of amount_calc is
signal next_amount : unsigned (amount'range);

begin
-- registry update
amount <=

(others => '0') when reset else
next_amount when rising_edge(clk);

-- CL next_amount
process(all) is
begin

-- default statement:
next_amount <= amount;
-- conditional statements (priority doesnt matter)
if zero then

next_amount <= (others => '0');
elsif accept_coin then

next_amount <= amount + 1 when in01;
next_amount <= amount + 5 when in05;
next_amount <= amount + 10 when in10;
next_amount <= amount + 20 when in20;

else
next_amount <= amount - 500 when dec500;
next_amount <= amount - 200 when dec200;
next_amount <= amount - 100 when dec100;
next_amount <= amount - 50 when dec50;
next_amount <= amount - 20 when dec20;
next_amount <= amount - 10 when dec10;
next_amount <= amount - 5 when dec05;
next_amount <= amount - 1 when dec01;

end if;
end process;

end architecture RTL;

FSM

24

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;

entity control_FSM is
generic(

COUNT_WIDTH : natural := 7;
AMOUNT_WIDTH : natural := COUNT_WIDTH+4;
COIN_LIMIT : natural := 100);

port(
clk, rese : in std_logic;
coin_sens, in01, in05, in10, in20 : in std_logic;
count01 : in unsigned(COUNT_WIDTH-1 downto 0);
count05 : in unsigned(COUNT_WIDTH-1 downto 0);
count10 : in unsigned(COUNT_WIDTH-1 downto 0);
count20 : in unsigned(COUNT_WIDTH-1 downto 0);
amount : in unsigned(AMOUNT_WIDTH-1 downto 0);
ready, accept_coin : out std_logic;
out01, out05, out10, out20 : out std_logic;
out50, out100, out200, out500 : out std_logic;
reset_counters, reset_amount : out std_logic);

end entity control_FSM;

architecture RTL of control_FSM is
type state_type is (idle, count, pay);
signal current_state, next_state : state_type;
signal coins : unsigned(COUNT_WIDTH-1 downto 0);

begin
-- clocked logic
current_state <=

idle when reset else
next_state when rising_edge(clk);

-- CL (moved from datapath)
coins <= count01 + count05 + count10 + count20;

next_state_cl: process(all) is
begin

-- default value prevents latches
next_state <= current_state;
case current_state is

when idle =>
next_state <= count when coin_sens;

when count =>
next_state <= pay when coins > COIN_LIMIT-1;
next_state <= pay when not (in01 or in05 or in10 or in20);

when pay =>
-- this should be equivalent to all tests listed
next_state <= idle when or(amount) = '0';

end case;
end process;

-- more next slide…

case current_state is
when idle =>
reset_counters <= '1';
reset_amount <= '1';
ready <= '1';

when count =>
accept_coin <= '1' when coins < COIN_LIMIT;

when pay =>
out500 <= '1' when amount >= 500;
out200 <= '1' when amount < 500 and amount >= 200;
out100 <= '1' when amount < 200 and amount >= 100;
out50 <= '1' when amount < 100 and amount >= 50;
if amount < 50 and amount >= 20 then

if count20 > 0 then out20 <= '1';
elsif count10 > 0 then out10 <= '1';
elsif count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 20 and amount >= 10 then
if count10 > 0 then out10 <= '1';
elsif count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 10 and amount >= 5 then
if count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 5 and amount >= 1 then
out01 <= '1';

end if;
end case;

end process;

end architecture RTL;

FSM 2/2

25

output_cl: process(all) is
begin

-- default values to prevent latching
reset_counters <= '0';
reset_amount <= '0';
ready <= '0';
accept_coin <= '0';
out01 <= '0';
out05 <= '0';
out10 <= '0';
out20 <= '0';
out50 <= '0';
out100 <= '0';
out200 <= '0';
out500 <= '0';

• Readability?

– What would happen if we mixed next_state CL into the

output CL?

• Default values for all signals

– => no latches

• No need for else after when or if

since default clause will apply.

• Use «if» to sort priorities,

when having multiple conditions and multiple outputs
– That are depending on each other..

if amount >= 500 then out500 <= '1';
elsif amount >= 200 then out200 <= '1';
elsif amount >= 100 then out100 <= '1';
elsif amount >= 50 then out50 <= '1';
elsif amount < 50 and amount >= 20 then

if count20 > 0 then out20 <= '1';
elsif count10 > 0 then out10 <= '1';
elsif count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 20 and amount >= 10 then
if count10 > 0 then out10 <= '1';
elsif count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 10 and amount >= 5 then
if count05 > 0 then out05 <= '1';
else out01 <= '1';
end if;

elsif amount < 5 and amount >= 1 then
out01 <= '1';

end if;

NOTE: with this prioritation

order, the sequence

becomes more complex

than necessary.

Recap ASMD

• D for datapath ASM

• ‘←’ in a Mealy box?

– OK because the register

is a part of the data path

(and not the FSM itself)

• Can we go without ‘←’ ?

• Should we?

26

reset_counters
reset_amount

ready

idle

coin_
sense

count
count

20

10

5

1

Inc20
A A+20

Inc10
A A+10

Inc5
A A+5

Inc1
A A+1

pay

coins
<100

accept_coin

pay

pay

A 200

A 100

A 50

A 500

A 20,
#20>0

A 10,
#10>0

Out500
A A-500

Out200
A A-200

Out100
A A-100

Out50
A A-50

Out20
A A-20

Out10
A A-10

A 5,
#5>0

 1

Out05
A A-5

Out1
A A-1

idle

true = down
false = right
A = amount

«Register operations» in data-path FSM (FSMD)

-and how to deal with it
• Common notations for register operations:

– on clock edge we update r1 based on a function

of register outputs

– on clock edge we increment r1,

– on clock edge, set r1 to r1+r2

• This notation can be confusing, as it implies

one clock delay if it is put into an ASM chart.

• Solution:

– Use ‘←’ for datapath only (not for FSM)

– Know that ‘←’ implies the use of additional

registers

27

r1 ← r1 + 1

r1 ← f(r1,r2)

r1 ← r2 + r3

FSM

D

CLK

Q

Output
CL

State
CL

D

CLK

Q

D

CLK

Q

D

CLK

Q

next_r1

next_r2

next_r3

r1

r2

r3

+1

+

f(r1,r2)
CL

Suggested reading

• DAH:

– 16 p 345-371

– 17 p 375 - 393

• Hva nå? <=

next_page when time_left > 15 min else questions ..?

28

BAD_IDEA: my_output <=

new_value when rising_edge(my_sig)

else old_value;

NO_SYNTH: process(my_sig) is

begin

if rising_edge(my_sig) then

if rising_edge(clk) then

<do something>

end if;

end if;

end process NO_SYNTH;

Non-clock Edge detection

• We do not want to have registers triggered

by other signals than clock

– FPGA: messes up clock distribution networks

– Synthesis will not understand timing

– Will easily lead to non-synthesizable code

• Solution

– Compare incoming signal with registered signal

29

REG:

sig <= next_sig when rising_edge(clk);

CL:

my_edge <= '1' when sig /= next_sig else '0';

my_rising <= '1' when (sig = '0') and (next_sig = '1') else '0';

-- <use my_edge or my_rising in combination with other signals> --

Pushbutton register storage

• Can be seen as a single state storage operation

30

• With default value • Without default • As a register operation

output <= next_out

state

enable

next_out <= input

T

F

reset,
output <= 0

default:
next_ouput <= output

output <= next_out

state

enable

next_out <= input

T

F

reset,
output <= 0

next_out <= output

state

enable

output input

T

F

reset,
output <= 0

Pushbutton register storage

(not in Oblig 6 2021)

• All storage should

be on clock edge!

• Reset should have

top priority when

asynchronous
– Synchronous reset:

• top priority after clock edge.

31

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity my_reader is

port(

clk, reset : in std_logic;

enable : in std_logic;

input : in std_logic_vector(7 downto 0);

output : out std_logic_vector(7 downto 0);

);

end entity my_reader;

architecture single_process of my_reader is

begin

process(clk, reset) is

begin

if reset then

ouput <= (others => '0');
elsif rising_edge(clk) then

ouput <= input when enable;

end if;

end process;

end architecture;

architecture two_statement of my_reader is

signal next_out: std_logic_vector(7 downto 0);

begin

process(clk, reset) is

begin

if reset then

ouput <= (others => '0');
elsif rising_edge(clk) then

ouput <= next_out;

end if;

end process;

-- latched input : Don't do this

next_out <= input when enable /* else next_out*/ ;

-- CL = OK

next_out <= input when enable else output;

-- CL alternative

with enable select next_out <=

input when '1',
output when others;

end architecture FSM_style;

process(all) is

begin

if enable then

output <= input;

elsif reset then

output <= "00000000";

end if;

end process;

	Slide 2: IN3160 IN4160
	Slide 3: Messages:
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Overview
	Slide 6: Register example: Simple counter
	Slide 7: General FSM
	Slide 8: «Datapath» FSM
	Slide 9: «Register operations» in data-path FSM (FSMD) -and how to deal with it
	Slide 10: Use of register in decision box
	Slide 11: Processor system is a datapath FSM
	Slide 12: Example Factoring state machine with Datapath
	Slide 13: When state count is nuts…
	Slide 14: Divide into models that can be conquered
	Slide 15: Detailed datapath
	Slide 16: Detailed FSM = use ASM
	Slide 17: Reiterate and refine
	Slide 18: Example reiteration
	Slide 19: VHDL modules and hierarchy
	Slide 20: Top
	Slide 21: Toplevel shell
	Slide 22: Counter
	Slide 23: amount_calc
	Slide 24: FSM
	Slide 25: FSM 2/2
	Slide 26: Recap ASMD
	Slide 27: «Register operations» in data-path FSM (FSMD) -and how to deal with it
	Slide 28: Suggested reading
	Slide 29: Non-clock Edge detection
	Slide 30: Pushbutton register storage
	Slide 31: Pushbutton register storage (not in Oblig 6 2021)

