
IN3160, IN4160 Digital system design

Introduction + HDL, PL and Design flow

Yngve Hafting



Overview

– General information
• Course management

• Schedule 

• Course Goals

• Curriculum

• Lab assignments

• Who are we

– Motivation 
• Why Digital Design?

• Why HDL?

– Intro to programmable Logic
• What is programmable logic? 

• Why choose programmable logic?

– Design Flow for digital designs

– Intro to our hardware…: 
• Zedboard

– Architecture

– Documentation

• «Our» HDL: VHDL

- Assignments and suggested reading for this week



Course Management

• Lecturers:

– Roar Skogstrøm (II’er IFI)

– Alexander Wold (II’er IFI)

– Yngve Hafting  (Universitetslektor IFI/ROBIN)

• Lab supervisors / teachers:

– "Hoi" Bihui Chen (student)

– Georg Magneshaugen (Student)

– Max Lauritz Øyen (Student)

– Sander Elias Magnussen Helgesen (Student)

– Seyed Mojtaba Karbasi (PhD)



Lectures

Monday 14:15 -16:00, OJD Logo «2438»)

Friday 10:15-12:00, OJD Logo «2438»)

Lab
LISP (2428): TBD- lab will be manned certain time slots- poll next slide

https://www.mn.uio.no/ifi/om/finn-fram/apningstider/

http://www.uio.no/studier/emner/matnat/ifi/IN3160/

(covers also INF4160)

Web

Monday Tuesday Wednesday Thursday Friday

Lecture 10-12

Lecture 14-16

https://www.mn.uio.no/ifi/om/finn-fram/apningstider/
http://www.uio.no/studier/emner/matnat/ifi/IN3160/


Where do we stand + lab supervision poll?

• www.menti.com

• Code 19654197

• Python testbenches will be mandatory in this course from 2024. 

– This year we will allow some testing amongst voulenteers. 

– The assignments will be the same design-wise, but test benches will be 

written using Python and tested using an open source framework 

(cocotb, GHDL and GTKWave)

http://www.menti.com/


IN1020

Introduction to 

computer technology

Study program connections

IN5200 

Advanced Digital System Design 

IN2060

Digital Design and 

Computer Architecture

Master

Bachelor
IN3160/IN4160 

Digital System Design 



Relevancy

Finishing this 

course you will 

be able to do 

work within the 

field of digital 

design. 

Robotics
Intelligent systems

Analog 

electronics

Digital

electronics

Asic

Design
FPGA 

Design

SoC

Design

Software

Design

IN3160/IN4160 

Digital System Design 



Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

• In this course you will learn about the design of advanced digital systems. 

• This includes programmable logic circuits, a hardware design language and system-on-

chip design (processor, memory and logic on a chip). 

• Lab assignments provide practical experience in how real design can be made.

• After completion of the course you'll:...

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html


... IN3160 vs IN4160 ...

IN3160

• After completion of the course you'll:

– understand important principles for design and 

testing of digital systems

– understand the relationship between behavior and 

different construction criteria

– be able to describe advanced digital systems at 

different levels of detail

– be able to perform simulation and synthesis of digital 

systems.

IN4160

• After completion of the course you'll:

– understand important principles for design and 

testing of digital systems

– understand the relationship between behavior and 

different construction criteria

– be able to describe advanced digital systems at 

different levels of detail

– be able to perform advanced simulation and 

synthesis of digital systems

– be able to perform advanced implementation and 

analysis techniques

NOTE: these are MINIMUM requirements for passing an exam. 

• You will be given the same opportunities to learn, and the curriculum is the same.

• Grading will be (slightly) stricter for IN4160 due to added minimum requirements

• Otherwise, this course will be held as one.



Syllabus

• Dally, William J. - Harting, R. Curtis - Aamodt, Tor M.

Digital Design Using VHDL A Systems Approach

Cambridge University Press 2016

ISBN9781107098862

• Lectures and lecture slides

• Mandatory assignments

• Handouts – Will be made available digitally on semester page

(Link from 2022 can be used until the 2023 link is ready)

– Cookbook

– Articles (Reset Circuits, Steve Kilts)



Compulsory lab assignments

• There are 10 compulsory lab assignments. 

– The book has chapter-exercises that can be used for self-study. 

• All assignments must be completed to take the exam. 

– Lab workload and complexity increases through the semester

• Lectures are prerequisite for some assignments

– Lectures most intensive in the beginning

• The lab assignments utilises the digilent Zedboard, featuring a 

Xilinx Zynq 7020 device that includes both a hardcoded ARM 

processor and FPGA fabric. 

• You will be introduced to tools and board first.  

• By the end of this course you will design a system, using both

processor and FPGA fabric, that will both regulate, read and 

display the speed of an electric motor connected to the board. 

https://store.digilentinc.com/zedboard-zynq-7000-arm-fpga-soc-development-board/



LAB

• Lab starts now! 

– Assignments are available in Canvas! 

– Assignments are individual.
• WHAT ABOUT...

– Collaboration?

– Previously approved assignments?

– ChatGPT?

– There will be one assignment (3) using peer review only.   
• Your reviews are mandatory for your approval!

– Some assignments may require that you show your setup to the lab supervisor. 
• Labs can be done entirely remote, but on-site is strongly adviced. 

• LISP (2428) is the LAB. 

– Both hardware and software will be available in LISP. 
• 4 boards with camera will be available online for those in quarantine/ isolation / specieal needs. 

• Questions..?



Software

• Vivado, Vitis 
– Floorplanning and Programming FPGA boards

– https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html
• Standard edition is free and should be sufficient up to assignment 9. 

• Questa=Modelsim
– Compilation, Simulation, waveform viewer

– "industry standard" 

• Tool chain for Python Testbenches = Vivado + these
– GHDL

• Open source VHDL simulation, used together with CocoTB below.

– GTKWave 
• Open source waveform viewer

– CocoTB
• Cosimulation framework 

• This is invoked when using "make" when using python based testbenches. 

• All software can be accessed from Linux machines on IFI, and IFI-digital-electronics

https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html


Resources

• Semester page/ course web "Vortex"

– Course information

• Exam date, lecture schedule, etc.

• Canvas (link from semester page)

– Assignment-files, delivery and -feedback

– Some links to external content

• in3160-discourse

– Communication and discussion:

• Requires login, allowes anonymous posting. 

• Both students and staff can answer ☺

– Note: Use the manned lab hours as much as possible for questions. 

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/index.html
https://canvas.uio.no/
https://in3160-discourse.uio.no/


IN3160

Introduksjon, HDL og PL

Hardware Description Language & Programmable Logic

Yngve Hafting



Wikipedia: U.S. Navy photo by Photographer’s Mate Airman 

Marvin E. Thompson Jr.

https://www.komplett.no/product/11257/pc-nettbrett/komplett-pc/komplett-gamer-

xtreme/komplett-gamer-xtreme-i250?offerId=KOMPLETT-310-11257#

https://www.sparkfun.com/products/14829

http://www.aes-eu.com/10gbe-fpga-nic.php

https://www.youtube.com/watch?v=rVlhMGQgDkY

h
tt

p
:/

/w
w

w
.m

o
is

u
n

d
.c

o
m

/2
0

1
4

/0
4
/0

8
/o

p
n
in

g
-a

v
-n

y
-b

a
s
e
s
ta

s
jo

n
-i
-a

s
e
ra

l/

Why learn Digital Systems Design? 



How to implement digital designs...

• Low Level

– Netlists 

– Schematic diagrams

– Programming using hardware description languages 

(HDL programming)

• High Level

– HDL programming (RTL)

– Block diagrams

• Connecting premade models (IP's)

– High level synthesis...

• Code Generators (Matlab/Simulink)

– Uses IP's 

– Generates HDL/ Netlists



18

• Syntesis enables

– One design 

• Several physical 

implementations

HDL vs netlists/ Schematics



Why HDL?

• Technology independent code

• Different abstraction layers

INF3430 / INF4431 19

Sequential statements:

if a=b then

aeqb <= ’1’;

else

aeqb <= ’0’;

end if;

Concurrent statements:

aeqb <= ’1’ when a=b else ’0’;

Boolean equations:

aeqb <=      (a(0) xor b(0)) 

nor (a(1) xor b(1));

Netlist:

U1: xor2 port map(a(0), b(0), x(0));

U2: xor2 port map(a(1), b(1), x(1));

U3: nor2 port map(x(0), x(1), aeqb);



IN3160
20

Why HDL? 

• Portability

– Tool and device independency

• IEEE Standards
– VHDL and System Verilog

• Both IEEE standards

(Institute of Electrical and Electronics Engineers)

• VHDL - IEEE 1076

• System Verilog - IEEE 1364

Compiler A Compiler B Compiler C

PLD CPLD FPGA

Any simulator/synthesis tool

Any vendor/device

HDL code

One design



21

Why HDL?
• Simple mainteenance/expansion of a design

COUNT      : inout std_logic_vector(3 downto 0); -- Count value

---

COUNTER :

process (RESET,CLK)

begin

if(RESET  = '1') then

COUNT <= (others => '0');

elsif rising_edge(CLK) then

COUNT <= COUNT + 1;

end if; 

end process COUNTER;

IN3160   



22

Why HDL?

4 bit counter:
COUNT      : inout std_logic_vector(3 downto 0); -- Count value

IN3160   



IN3160   23

8 bit …



24

16 bit …

IN3160   



25

32 bit...

IN3160   



HDL vs software

26

HDL «Hardware description

language»

Software programs 

Defines the logic function of a circuit Defines the sequence of instructions 
and which data shall be used for one or 
more processors or processor cores

CAD tools syntetizises designs to 

enable realization using physical gates. 

A compiler translates program code to 

machine code instructions that the 

processor can read sequentially from 

memory 

Implemented using programmable 
logic (PL, FPGA, CPLD, PLD, PAL, PLA, …) 
or ASICs (application specific circuits) 
(“ASICs”, processors, ..-chips,.. etc.)

Is stored in computer memory

Verilog  (SystemVerilog)
VHDL    (VHDL 2008)

(System C m. fl.)

C, C++, C#, Python, Java, assemblere 

(ARM, MIPS, x86, …) Fortran, LISP, 

Simula, Pascal, osv…  

process(reset, clk)
begin

if (reset = ‘1’) then
sum <= '0';

elsif rising_edge(clk) then
sum <= a + b;

end if; 
end process;

+

a b

n

n+1

n

D

CLK

Q
sum

RES

n+1

reset

clk

int sum(int a, int b){
int s;
s = a + b;
return s;

}

MOV R5, #0       ;set base adr
LDR R7, [R5, #8] ;load reg R7
LDR R8, [R5, #12];load reg R8
ADD R0, R7, R8   ;R0=R7+R8    
STR R0, [R5, #16];store R0

01001100 10011001 00100100 01001010
11001100 10111001 01100100 11110110
01001100 10011001 00111100 11101010
01001100 10011001 00100100 01011010
…

(binary code is random, for illustration only)



HDL

Code for generating and parsing simulation data

(Test benches)

What is HDL

• VHDL = VHSIC HDL:
– Very High Speed Integrated Circuit 

Hardware Description Language

– The purpose is to generate circuits, 

and verify their function through simulation.

– Synthesizable (realizable) code work 

concurrently (in parallel, always on). 

– Code for simulation include things such as file 

I/O which cannot be synthesized. 

– Testbenches can use synthesizable elements, 

but will use sequential statements, and is only 

run as software. 

This may be confusing at times... 

code for generating multiple 

instances or variants of entities

Synthesizable code

IN1
OUT

IN3

IN2



What hardware..?

• ASIC : Application Specific Integrated Circuit

– Processors, microcontrollers, GPUs (x86, ARM, GeForce)

– Customized chips 

• PL : Programmable logic

– PLA, PAL "Programmable Logic Array" / .."Array Logic"

– CPLD "Complex Programmable Logic Device" = Several PAL/PLAs, FFs

– FPGA "Field Programmable Gate Array" = More complex array of primitives   

– SOC's "System On Chip" = FPGA + micro –prosessor/-controller



What is PL and FPGA ?

(Programmable Logic) 

• PL = FPGA, CPLD, PLA… 

(Field Programmable Gate Array, 

Complex Programmable logic Device)  

• PL vs processor

(FPGA vs CPU, MCU) ?

• PL vs ASIC (Application 

Specific Integrated circuit)?
&

+

II

*

/

/
&0

0

0

Q

Q
S ET

C LR

D

J

Q

Q

K

S ET

C LR

Q

Q
S ET

C LR

D

J

Q

Q

K

S ET

C LR

ENB

ENB

ENB

ENB

ENB
 

LUT

BRAM

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

Q

Q
S ET

C LR

D

CLB

0

0

0

0

0

U/D

Re set

B1

B4

Car ry ou t

ENB

Co unte r

Vin

GND

Vref

 

D1

D4

Sign

ENB

A/D C onvert er

CLB
Q

Q
SET

CLR

D

LUT

EN
B

0

1

0

1



When or why choose

programmable logic?

• (Verify behavior of ASIC)

• Prototyping flexibility

– Lots of multi purpose IO

– Reprogrammable

• Small batch production

• Parallellism

• Custom / fast

• Runtime reconfigurability

• … 

• High Volume + low cost

• When dedicated HW is 

well suited. 

• When extreme speed is 

required => ASIC 

• … 

When to avoid

programmable logic?



IN3160

Digital Design Flow
Yngve Hafting



Overview

– Digital design tools.

– Specification

– Design entry, synthesis and PAR

– Timing analysis

– Timing simulation

– Testing

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t



Digital Design Flow: Specification

1. Define the problem

2. Draw a functional diagram 

– block diagram with major components and connections

3. Identify IO requirements

4. Identify necessary interface circuits

5. Decide on HDL (VHDL, Verilog, System C,…)

6. Draw a program flowchart (ASM diagram)

– Defines how the design shall work logically.

– By hand or using tools such as: 

• Visio, Draw.io, Lucid chart, etc.

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t



Digital Design tools…

• Design entry:

– Use your favourite HDL text editor 

(Notepad++, Emacs, Vivado or Questa).

• Simulation (RTL, Gate Level, Timing)

– Here: Typically using Questa (=Modelsim)

• Synthesis, Implementation, Programming

– Vendor specific tools,  

• Here: Vivado by Xilinx

– Also possible: Digilent tools for programming. 

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t



Design entry, synthesis and PAR

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t

• RTL = Register Transfer Level 

– RTL does not use specific gates or technology

– Designs are mostly done in RTL

– RTL  simulation can be used to verify logic function. 

• Gate level synthesis

– Technology specific gates are selected for all components in the design. 

• Typically a synthesizer will pick gates specific for the (FPGA) chip family we use. 

– Once we have a gate level design we can
• calculate gate-, but not propagation delays

• Simulate using gate delays. 

• Place and route

– After synthesis gates can be placed within a specific (FPGA) chip. 

– When place and route is performed propagation delays may also be simulated thus

– We can do all timing simulation, including propagation delays. 



For N-bit CLA with k-bit blocks:

tCLA = tpg + tpg_block + (N/k – 1)tAND_OR + ktFA

– tpg : delay to generate all Pi, Gi

– tpg_block : delay to generate all Pi:j, Gi:j

– tAND_OR : delay from Cin to Cout of final AND/OR 

gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much 

faster than a ripple-carry adder for N > 16

IN2060: Carry-Lookahead Adder Delay

Static timing analysis
• Performed by EDA tools on synthesized or routed designs

• Will attempt to 

• find critical path(s) and 

• check if timing requirements (constraints) can be met. 



• Simulating synthesized or routed designs

– Verification and test benches will be discussed further later…

• Uses timing information for every component in use. 

– Requires much more resources than RTL simulation. 

– Can be slow for complex designs

• Hence the option to simulate at gate level, before performing PAR.

• Device programming…

– (Usually done from vivado, but third part tools may be used).

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t

Timing simulation, programming



Testing and verification
• «Testing» is to find physical errors in a device.

– Built in self-tests
• Ex: Memory tests in BIOS 

– Design for testability

• Means that we design for physical testing. 

• We may touch this later in the course.

• «Verification» is to check the design 

– Simulation

• Testbenches

– HDL

– Scripts

– Co-simulation using normal programming languages

– Analysis: 

• Compilation

• Timing Analysis

• Implementation reports

• Spend more time in early phases!

– Avoid spending much more time fixing bugs later

In the conceptual 
review

While coding

When compiling

When simulating

During physical 
testing

By the customer

In the design phase

M
y 

er
ro

rs
 w

ill
 b

e 
fo

u
n

d
..

.



Introduction to course hardware and software tools

• Zedboard

• Questa

• Vivado

• ROBIN wiki:  
https://robin.wiki.ifi.uio.no/Hovedside

– Software

• FPGA tools
https://robin.wiki.ifi.uio.no/FPGA_tools

• Cook book and ZedBoard documentation

– Canvas – IN3160

• Cookbook_v3_5.pdf

• ZedBoard HW UG vX_X.pdf

– Zynq intro video:
https://www.xilinx.com/video/soc/zedboard-overview-featuring-zynq.html

https://robin.wiki.ifi.uio.no/Hovedside
https://robin.wiki.ifi.uio.no/FPGA_tools
https://www.xilinx.com/video/soc/zedboard-overview-featuring-zynq.html


Digital Design tools…

• Design entry:

– Use your favourite HDL text editor 

(Notepad++, Emacs, Vivado or Questa).

• Simulation (RTL, Gate Level, Timing)

– Questa (=Modelsim)

– GHDL

• Synthesis, Implementation, Programming

– Vendor specific tools…  

• Here: Vivado by Xilinx

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing 

analyses

OK?

Constraints
(Speed/pin 
numbers)

Constraints
(Speed/area)

No

Yes

Device 
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y 

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y 

in
d
e
p
e
n
d
e
n
t



Simulation and test benches

Simulation can be run several ways:

1. Manually setting inputs and specifying time 

intervals in the GUI or console 

– Tedious and not really practical at all

– Normally this is only done only initially. 

2. To make scripts (tcl for Questa) in a separate 

(.do) file. 

– The script commands will be added to the 

console during manual use, and can be copied 

as text into a .do file. 

– setting up the simulation windows can be done 

reusing script commands. 

3. Using test benches written in HDL (VHDL) 
• possible in combination with running scripts

– VHDL can be used to generate code for applying test 

vectors sequentially to the inputs of an entity for simulating. 

– Test bench code is SW even if it is written in an HDL

(not synthesizable) 

– VHDL has built in test-specific attributes

4. Using Co-Simulation (cocotb)

– runs simulation and coroutines in parallell
• Environment switches back and forth between coroutines and 

simulation

– Test vectors are generated in software coroutines

– Checks and reporting is done in coroutines

– Python can be used for test-benches

• not built for hardware testing initially

• scale better with large design and complex testing

• non-HDL-specific issues has (way) better support



Suggested reading,  Mandatory assignments

• D&H: 

– 1.4 p 11-13

– 1.5 p 13-16

– 1.6 p 16-17

– 2.1 p 22-28

– 2.2 p 28-30

– 2.3 p 30-34

– 3.1-3.5 p 43-51 = repetition (known from previous courses)

• Oblig 1: «Design Flow»

– See canvas for further instruction.

Note: Some of this content will be covered in depth in later lectures. 

- Read this to familiarize yourself with content, form and language. 


	Slide 1: IN3160, IN4160 Digital system design Introduction + HDL, PL and Design flow
	Slide 2: Overview
	Slide 3: Course Management
	Slide 4: Lectures 
	Slide 5: Where do we stand + lab supervision poll?
	Slide 6: Study program connections
	Slide 7: Relevancy
	Slide 8: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html 
	Slide 9: ... IN3160 vs IN4160 ...
	Slide 10: Syllabus
	Slide 11: Compulsory lab assignments
	Slide 12: LAB
	Slide 13: Software
	Slide 14: Resources
	Slide 15: IN3160 Introduksjon, HDL og PL  Hardware Description Language & Programmable Logic
	Slide 16
	Slide 17: How to implement digital designs...
	Slide 18: HDL vs netlists/ Schematics
	Slide 19: Why HDL?
	Slide 20: Why HDL? 
	Slide 21: Why HDL?
	Slide 22: Why HDL?
	Slide 23
	Slide 24
	Slide 25
	Slide 26: HDL vs software
	Slide 27: What is HDL
	Slide 28: What hardware..?
	Slide 29: What is PL and FPGA ? (Programmable Logic) 
	Slide 30: When or why choose programmable logic?
	Slide 31: IN3160
	Slide 32: Overview
	Slide 33: Digital Design Flow: Specification
	Slide 34: Digital Design tools…
	Slide 35: Design entry, synthesis and PAR
	Slide 36
	Slide 37: Timing simulation, programming 
	Slide 38: Testing and verification
	Slide 39: Introduction to course hardware and software tools
	Slide 40: Digital Design tools…
	Slide 41: Simulation and test benches
	Slide 42: Suggested reading,  Mandatory assignments

