
IN3160

Combinational logic design (+ Verification)

Messages:

• Python Beta for oblig 1-4 is posted on vortex: https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/python-beta/

– (some textual benefits not related to python also).

• Implement?

– Oblig 1, 2
• yes (follow assignment instructions)

• Demonstrate / show lab supervisor?

– Yes:
• Simplifies approval and feedback process

– If not possible…
• Video -> filesender. https://filesender.uio.no/

• Can be used to show the same

– Feedback in canvas only

– …remember to check...

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/python-beta/
https://filesender.uio.no/

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of

advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behavior and different construction

criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for CL part:

• Know how to create combinational logic (CL)

• What is CL and non combinational logic?

• What is hazards in CL

• How to manage hazards in CL

• Verification

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

• What is combinational logic circuits

• CL vs Sequential logic

• What is and how to deal with hazards

4

(c) 2005-2012, W. J. Dally

Combinational vs Combinatorial

Combinational Combinatorial

mathematics of counting

combinational logic circuit

combines inputs to generate

an output

Norsk: Kombinasjonslogikk / kombinatorisk logikk)

Varierende bruk forekommer…

I all hovedsak brukes “kombinatorisk” på norsk..

(c) 2005-2012, W. J. Dally

Combinational Logic Circuit

• Output is a function of current input

• Example – digital thermostat

C
o

m
p

a
re

Temp

Sensor 3

CurrentTemp

A

3

PresetTemp

B

A>B
FanOn

VHDL code

library IEEE;

use IEEE.std_logic_1164.all;

entity compare is

port(

current_temp : in std_logic_vector(2 downto 0);

preset_temp : in std_logic_vector(2 downto 0);

fan_on : out std_logic

);

end entity compare;

architecture combinational of compare is

-- declarations (none)

begin

-- statements

fan_on <= '1' when (current_temp > preset_temp) else '0';

end architecture;

C
o

m
p

a
re

Temp

Sensor 3

CurrentTemp

A

3

PresetTemp

B

A>B
FanOn

(c) 2005-2012, W. J. Dally

Sequential logic circuit

• Includes state (memory, storage)

• Makes output a function of history

as well as current inputs

• Synchronous sequential logic

uses a clock

• Example: calendar circuit

– (1 clock / day...)

– "Compute Tomorrow" is CL

– Register stores state

R
e

g
is

te
r 4

TodayMonth

5

TodayDoM

3

TodayDoW

Clock

C
o

m
p

u
te

T
o

m
o

rr
o

w

TomorrowMonth

4

TomorrowDoM

5

TomorrowDoW

3

Combinational vs sequential code example

COMBINATIONAL: process (all) is

begin

z <= ‘0’;
if b then

z <= a;

end if;

end process;

-- «all» can be replaced by b here

SEQUENTIAL: process (clk) is

begin

if rising_edge(clk) then

z <= ‘0’;
if b then

z <= a;

end if;

end if;

end process;

-- quite often we have both reset and clk

NOTE:

Using IF, we get latches unless all options are covered.

Here: z<=‘0’ (default value) solves this issue.

Using ‘when-else’ is another option

-- concurrent statement is more compact...

z<= a when b else '0';

D Q

a

 0 0

1

b clk

z

a

 0 0

1

b

z

(c) 2005-2012, W. J. Dally

CL

i
1

i
n

o
1

o
m

CL
i

n

o

m

o = f(i)

Input determines output

Combinational logic is memoryless

(c) 2005-2012, W. J. Dally

Can compose digital circuits

Thermostat

Calendar

=

TodayDoW

Sunday

ItsSunday

TempHigh

ItsNotSunday
FanOn

NOT AND

• "Combinational logic circuits are closed under acyclic composition".

• Ie. As long as there are no loops:

– A module of modules of combinational logic is combinational

(c) 2005-2012, W. J. Dally

Closure

CL1

CL2

CL12

(c) 2005-2012, W. J. Dally

CL
CL

a

b

c

o

YES

CL

CL

a

b

NO

Code that refers back to itself infers latches and is not combinational.

Inferring latches (not intended as RAM/ROM) is bad practice,

and should be shunned at all costs unless strictly necessary.

If you think you need latches (rather than FFs) you most likely should rethink the design...

Non CL example :

• Can be hard to spot in

dataflow code

• => Use high level code for

readability (& modifiability)

architecture data_flow of D_flipflop is

signal e, f, g, h, i, j, k, l: std_logic;

begin

-- concurrent statements

e <= not (D and clk);

f <= not (e and clk);

g <= not (e and h);

h <= not (f and g);

i <= not (g and not clk);

j <= not (h and not clk);

k <= not (l and i);

l <= not (k and j);

Q <= k;

end architecture data_flow;

Hazards (glitches) in combinatorial circuits

• Definition of hazard in a combinational circuit:

– Output goes through an (unwanted) intermediate state when input changes

– e.g.

– With several inputs, there can be several unwanted transitions

• It doesn’t have to be 0 1 0, it can be X->Y->Z or X->Y1->…-> Yn-> Z 15

xk

f

xother unchanged
Combinational

logic

xn

...

x0 f

Hazards in combinatorial design

• Ex: f(a,b,c) = (aΛc) V (bΛc’)

f <= (a and c) or (b and not c);

• a = ‘1’, b = ‘1’, c changes from ‘1’ to ‘0’

• f goes from 1 to 0 to 1

(the inverted input of the second and-gate..)

• Possible solutions: (next page)

16

a

b

c

f

a

b

c

f

a

b

c

f

a

b

c

f

Solutions

• 1: add registers… (we’ll get back to this one in oblig 8)

– This is what we normally do..

– Left => stable input

– Right => stable output

• 2: Manually design a solution

– D&H goes through that process

– Laboriuos process: not a topic for this course

• 3: (Use high level code!)

– may not solve every possible issue, but

– will not induce issues if the syntheziser is capable

– Synthesizing for FPGAs, = LUTs (problem occurs first at > 4 inputs)
17

a

b

c

f

→Combinational

logic

x n

...

x 0 f Combinational

logic

x n

...

x 0 fD

CLK

Q
D

CLK

Q

Designer vs tool- example

• F(d,c,b,a) is true if input d,c,b,a is prime

18

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

=
dcba

mf)13,11,7,5,3,2,1(

(c) 2005-2012 W. J. Dally

Schematic Logic Diagram

=
dcba

mf)13,11,7,5,3,2,1(

d c b a

f

1

2

3

5

7

11

13



Equation:

Schematic Logic Diagram:

Manual optimization

• Minimalistic and Hazard free implementations can be found

using implicant cubes and Karnaugh diagrams

• Method is laborious and can normally be skipped entirely.

• D&H covers this in 6.4-6.9, we will not go in-depth.

20

0001

0011

1011

0101

0111

0010

1101

=
dcba

mf)13,11,7,5,3,2,1(

0
0

0
1

1
1

1
0

a

b

d

0

0

0

0

0 0

1

1 1

1 1

1 0 0

1 0

ba

dc 00 01 11 10

Code will have to be written as a dataflow

or structural design.

VHDL that implement the prime function (F)

• Note that these do not address any hazard issue.

VHDL Solution using case

library IEEE;

use IEEE.std_logic_1164.all;

entity prime is

port(

input: in std_logic_vector(3 downto 0);

isprime: out std_logic

);

end entity prime;

architecture case_impl of prime is begin

process(input) begin
case input is
when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d" => isprime <= '1';
when others => isprime <= '0';

end case;
end process;

end case_impl;

The vertical bar ‘|’

can be used to list multiple choices

=
dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

library ... (same as previous slide)

entity ...

architecture mcase_impl of prime is

begin

process(all) begin

case? input is

when "0--1" => isprime <= '1';
when "0010" => isprime <= '1';
when "1011" => isprime <= '1';
when "1101" => isprime <= '1';
when others => isprime <= '0';

end case?;

end process;

end mcase_impl;

Solution using «Matching case» = case?

Matching case can be used with ‘-’

(‘-’ = don’t-care bit)

Note:

Each option should only be listed once

=
dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

More on case and case? «matching case»

• Case requires all possible

outcomes to be defined

– «when others»

• Will cover other outcomes, but may also

cover errors

– Ie: we added a subtype to a type, and

should extend a case…

• If you have many options that do

the same

– Use «matching case» case?

• Allowes for don’t cares to cover options

with the same outcome.

type holiday is (Xmas, easter, summer);

signal min_holiday: holiday;

type temperature is (freezing, cold, mild, warm);

signal weather : temperature;

...

case my_holiday is

when Xmas => weather <= freezing;

when easter => weather <= cold;

when others => weather <= warm;

end case;

-- add ‘autumn’ to holiday type…

-- will compilation bug you?

-- should autumn be considered warm..?

Solutions using concurrent signal assignment

Which one would you prefer reading?

architecture selected of prime is

begin

with input select isprime <=

‘1’ when x"1" | x"2" | x"3" | x"5" |x"7" | d"11" | x"d",

‘0’ when others;

end architecture selected;

architecture dataflow of prime is

begin

isprime <=

(input(0) and (not input(3))) or

(input(1) and (not input(2)) and (not input(3))) or

(input(0) and (not input(1)) and input(2)) or

(input(0) and input(1) and not input(2));

end architecture dataflow;

=
dcba

mf)13,11,7,5,3,2,1(

No dcba q

0 0000 0

1 0001 1

2 0010 1

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 1

8 1000 0

9 1001 0

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 0

15 1111 0

👎
Avoid pure dataflow unless

strictly necessary

👍👍👍
Selected statements will not infer

latches unless explicitly designed

for that purpose

IN3160, IN4160

Verification part 1

Yngve Hafting

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience in

how real design can be made.

After completion of the course you will:

• understand important principles for design

and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Know what we mean by ‘verification’ and ‘test’
• Functional verification

• Formal verification

• Compilation

• Simulation

• Coverage

• Know how to perform verification
• Manual stimuli

• Script based stimuli

• Test benches

• Know basic simulation principles for digital systems

• Know how event based simulation works

• Know the difference between event based and cycle based

simulation.

• Know how basic VHDL structures will be simulated
• Compilation steps

• Process sensitivity list

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Overview

• What is- & Why verification

• Verification vs Testing

• Coverage

• Compilation

• Simulation
– Types

• RTL (functional)

• Timing
– Static timing analysis

– dynamic

– Execution
• Cycle based

• Event based

- Assignments and suggested reading

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

Verification vs. Testing..

We can design for testing-

but when we start testing,

- we should already know that the design works

Verification Testing

Ensures that the design meets the specification Ensures that one particular device actually works-

has no faulty gates or other production errors

Is done throughout the design process Is performed after manufacturing process

- Before shipping the product to the customer

Consists of tests that ensure that the design works

• Logically

• Compilation

• RTL simulation

• Timing

• Static timing analysis

• Timing simulation

Consists of tests that each product works

• Electrical tests

• Built in self tests

• At start up or user initiated

• RAM tests etc.

What is verification?

Specification

Design entry
VHDL, Verilog

RTL
simulation

OK?

No

Synthesis

Yes

Gate level
simulation

OK?

No

Place & Route

Yes

Timing simulation
Static timing

analyses

OK?

Constraints
(Speed/pin
numbers)

Constraints
(Speed/area)

No

Yes

Device
programming

Technology dependant
libraries

Technology independent
libraries

T
ec

h
n
o
lo

g
y

d
e
p
e
n
d
a
n
t

T
ec

h
n
o
lo

g
y

in
d
e
p
e
n
d
e
n
t

• Compilation

– Ensures that the code can be implemented.

• Formal verification

– To prove that a module has a certain function

• Mathematical equivalence (requires mathematical proof)

• Model check: Checks the state space of a system to test if certain assertions are true

– = Check if we can set the system in invalid states...

• Functional verification

– To verify that the code behaves as intended

– RTL simulation

• Checks that the code provides correct output

– Gate level simulation (Post synthesis simulation)

• Simple timing tests (fast)

– Timing simulation (Post PAR simulation)

• Static timing analysis

– Critical path analysis

• Check that we meet setup and hold requirements from interacting devices.

– Bus functional models, BFM
• Check that our device can communicate correctly on a bus

• Can provide both input and provide response for “other devices” on a bus

• IP or self made…

Coverage

• Will we be able to cover all states and possibilities for our design?

– Likely not.

• A formal verification process may ensure this, but is usually not possible.

• Specification coverage

– What is the proportion of the specification that we test?

• 100% of features usually is the goal

• Code coverage

– Usually all our code lines should be tested.

• If not- do you really need that code…?

• Test patterns (Data coverage)

– 100% never possible (e.g. 64 bit adder 2^128 possible patterns…)

– Special cases

– Randomized tests

Compilation: Analysis and Elaboration

• Analysis

– The compiler reads all the files, check syntax, semantics

– Compiled result is

• translated to an intermediate representation

• stored in (work) library

• Elaboration (requires error free analysis)

– Creates design hierarchy

• Instantiates entities

• Creates connections

– Checks that types does match for connected signals

Simulation

• The Simulator

– knows all signal dependencies
• Unless there are errors in signal sensitivity lists.

– keeps track of all signal values

• Both external and internal to the design

– has an event queue
• Every change in a signal is an event scheduled at a specific time step.

• Events may be queued to happen at the same simulation step

– But they are resolved one by one.

• Simulation types (upcoming slides)

– Cycle based

– Event based

Cycle based simulation

• No notion of time within a single clock cycle

• Only evaluate boolean functions for each component once

• Very fast, but can produce simulation errors

• Not widely used, but can be used in some parts of designs with high simulation times

– This is almost what we get when using "clk" as sensitivity in a process

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

34

Clock

Data In

Registers Registers RegistersCombinatorial

Logic

Combinatorial

Logic

etc.

Event driven simulation

• «event driven» => time is driven by events

– Change in inputs (stimuli)

– Change in outputs that propagate to other changes

• All signal drivers are modelled with a delay called «delta delay»

– A delta delay is a delay of 0 time-

• a mechanism for queuing of events

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

35

Event driven simulation
• An event occurs in a time-step when a signal changes

(Ex. an input is set from the testbench)

– All signals that depend on the signal is evaluated

• Changes are put in the event queue

– When timing information is provided (post synthesis)

» Timing delays are used to schedule events

– With no timing information (RTL-simulation)

» Output is queued at the same time-step

» A delay of 0 time is called a delta delay (δ)

– All events in the queue for a time step is evaluated

• Until there are no more changes left

• The simulation proceeds to the next time-step when there are no

more events to be evaluated

• In RTL simulation, FF outputs should only be evaluated when the

clock edge occurs

• Event driven simulation ensures all simulators get the same result.

Event queues and delta delay example

INF3430 / INF4431

Simulation methodology – Cycle and event driven simulation

37

a
b c

a b cps δ

IN a physical circuit

We may see such glitches

Glitches can be hidden in waveform diagrams

Post synthesis- will much more likely show

these type of effects than RTL-simulation

RTL simulation practical example

• Modelsim / Questa:

– Creating test benches

• Example (tb_xor.vhd)

• See ../verification...

Testbench example

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity tb_xor is

-- Empty entity of the testbench

end entity tb_xor;

architecture behavioral of tb_xor is

component X_OR is

generic(WIDTH : natural);

port(

input : in std_logic_vector(width-1 downto 0);

output : out std_logic

);

end component;

signal a, b, c : std_logic;

signal d : std_logic_vector(4 downto 0);

signal e : std_logic;

begin

TEST_UNIT_1 : x_or

generic map(

WIDTH => 2 -- 2 port XOR

)port map(

input(0) => a,

input(1) => b,

output => c

);

TEST_UNIT_2 : x_or

generic map(

WIDTH => 5 -- 5 port XOR

)port map(

input => d,

output => e

);

-- generate test vectors --

main: process is

variable abd: std_logic_vector(d'range);
begin

wait for 1 ns;

for i in 0 to 24 loop

abd := std_logic_vector(to_unsigned(i, abd'left+1));

d <= abd;

a <= abd(0);

b <= abd(1);

wait for 1 ns;

assert (e = c) report

("e differs from c for input = " & integer'image(i))

severity error;

-- assert (e = xor(d)) report("e is not the even parity

of d for " & integer'image(i)) severity error;

end loop;

report ("TESTING FINISHED!");

std.env.stop;

end process;

end architecture behavioral;

Stimuli

DUT =

VHDL module

Predictor

Comparator

Results /log

General testbench layout

• Stimuli
• Generate or read stimuli from a file

• Use procedures rather than repeating lines

• DUT
• Device under test (Device, Module, ...)

• Connect DUT input to stimuli to create

simulation results

• Predictor
• Predicts what the output should be

• Calculates from input or reads from file

• Comparator
• Compares simulation result with predicted

result and reports to screen or file.

Cocotb testbench

import cocotb
from cocotb import start_soon
from cocotb.triggers import Edge, Timer, ReadOnly
import random

bitwise XOR of input (a subroutine for predictor)
def xor(input):

result = 0
for i in range(input.n_bits):

result = result^(input & 1)
input = input >> 1

return result

Predicts or calculates what the output should be
def predictor(dut):

return xor(dut.input.value)

Compares simulated output with predicted output
async def compare(dut):

while 1:
Test on new input, then let output settle.
await Edge(dut.input)
await ReadOnly()
assert dut.output == predictor(dut), (

"output ({out}) is not as predicted: XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

dut._log.info("output ({out}) is XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

Sets stimuli-data in DUT
async def set_stimuli(dut, vector):

dut.input.value = vector
await Timer(1, units= 'ns')

Generate all data
async def stimuli_generator(dut):

#for i in range(2**dut.input.value.n_bits):
for i in range(2**len(dut.input)):

await start_soon(set_stimuli(dut, i))

@cocotb.test()
async def main_test(dut):

"""Try accessing the design."""
dut._log.info("Running test...")
start_soon(compare(dut))
await start_soon(stimuli_generator(dut))

dut._log.info("Running test...done")

Makefile

defaults

SIM ?= ghdl

TOPLEVEL_LANG ?= vhdl

VHDL 2008

EXTRA_ARGS +=--std=08

TOPLEVEL is the name of the

toplevel module in your VHDL file

TOPLEVEL ?= x_or

#VHDL_SOURCES +=

$(PWD)/../src/$(TOPLEVEL).vhd

VHDL_SOURCES += $(PWD)/../src/*.vhd*

SIM_ARGS is Simulation arguments.

--wave determines name and type of

waveform

SIM_ARGS +=--wave=$(TOPLEVEL).ghw

-g<GENERIC> is used to set generics

defined in the toplevel entity

SIM_ARGS +=-gWIDTH=5

MODULE is the basename of the

Python test file

MODULE ?= tb_xor

include cocotb's make rules to

take care of the simulator setup

include $(shell cocotb-config --

makefiles)/Makefile.sim

removing generated binary of top

entity and .o-file on make clean

clean::

-@rm -f $(TOPLEVEL)

-@rm -f e~$(TOPLEVEL).o

Stimuli

DUT =

VHDL module

Predictor

Comparator

Results /log

VHDL Testbench

• Stimuli generator and test environment in VHDL

• Powerful possibilities for simulation

– File I/O

• Reading test patterns from file

• Writing results to file and compare it to a file with the

correct answers

• The file with the correct answers can also be read, and

comparison between the result and the blueprint can be

executed in the testbench

– Can build in modules for surrounding circuits

• Especially important if we have a two-way communication

between UUT (Unit Under Test) and surrounding circuits

(Handshake signals)

• Gives simulator independent testbench.
42

In the conceptual
review

While coding

When compiling

When simulating

During testing

By the customer

In the design phase

M
y

er
ro

rs
 w

ill
 b

e
fo

u
n

d
...

Testbench

• In a test bench you can

– include other modules (that

are more or less verified),

– or provide data for one unit

at a time.

• Often we rely on simulation

models created by others.

– Bus functional models etc.

– Can be required to achieve

certifications in industry..
43

VHDL Testbenches

• Libraries

• Empty entity (can have generics, but no IO)

• Component declaration for each entity that is a part of the test

• Signals for all ports we would like to manipulate

• Component instantiation

– («DUT» is likely the module we would like to test)

• One or more processes that

– set input test vectors at specific time intervals

– evaluates output vectors

– reports findings and results to screen or file.

Simulation of VHDL models

• The time datatype is defined in std.vhd

• The function now returns current simulation time

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

45

Implementation

specific

VHDL simulation cycle I

• VHDL simulation has two phases:

– Initialization phase

– Repeating execution of the simulation cycle

• Simulation starts at time 0

• Current simulation time, Tc

• Next simulation time, Tn

• Tn is calculated from the earliest occurrence of:

– TIME’high (max simulation time)

– Next time a driver is activated

– Next time a process starts (continues)
INF3430 / INF4431

Simulation methodology – Simulation of VHDL models
46

VHDL simulation cycle II

• It is assumed that all signals have had their value forever at the

start of simulation

– Signals are initialized to ‘U’ (undefined) unless otherwise specified.

• Each simulation cycle is executed by:

– Tc is set to Tn

– All explicit assignments (input stimuli) and all implicit signals are updated.

Both of these can cause new events, either a delta delay ahead or at

another time.

– If Tn = Tc, then a delta cycle is the next cycle

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

47

VHDL processes

• Process sensitivity

– Decides when a process is invoked in simulation

– «SHOULD not» interfer with how HW is made…

• Do not trust this..!

– Good practice:
• Use keyword all for combinational logic

• Use clock (and reset when asynchronous) for sequential logic.

Simulation specific code (Non synthesis)

• Assertions (will be ignored by synthesis tools)

– Can be used to create error messages and notifications based on results

– Ex: assert (e = c) report("e differs from c") severity error

• Read «assert» as «if not <boolean expression> then» [report…]

• Wait for <time> (will be ignored by synthesis tools)

• Warning..:

– «wait for / wait on <signal>» can be used in synthesizable code

• Makes sequential (latched or flip-flopped) logic.

• Better: use the IEEE1164 keyword «rising_edge» or «falling_edge» to ensure operation

Cosimulation: Cocotb and python testbenches

• Cosimulation: Design and testbench simulated independently

• Communication through VPI/VHPI interfaces, represented by cocotb
”triggers”.

• When the Python code is executing, simulation time is not advancing.

• When a trigger is awaited, the testbench waits until the triggered
condition is satisfied before resuming execution.

• Available triggers include:
– Timer(time, unit): waits for a certain amount of simulation time to pass.

– Edge(signal): waits for a signal to change state (rising or falling edge).

– RisingEdge(signal): waits for the rising edge of a signal.

– FallingEdge(signal): waits for the falling edge of a signal.

– ClockCycles(signal, num): waits for some number of clocks (transitions from 0 to 1).

Kilde: Ben Rosser (Penn) Cocotb for Cern Micorelectronics 2018 P14,16

Cocotb: Coroutines, tasks and triggers

• All signals in the design hierarchy can be probed and set in python

• "async def" is used when defining coroutines

• Multiple triggers can be used

– enable tests running independently

• cocotb.start_soon(<coroutine>)

– Starts the coroutine as soon when "awaiting" the next time

– Used to start clock generation,

• await(<task/trigger>) https://docs.python.org/3/library/asyncio-task.html

– Waits until the task is finished or trigger condition occurs

– await ReadOnly() is used to let signals settle after other
triggers such as await Edge(<dut.signal>)

» You do not want to read signals before all delta delays are
completed...

@cocotb.test()
async def main_test(dut):

""" Starts comparator and stimuli """
dut._log.info("Running test...")
start_soon(compare(dut))
await start_soon(stimuli_generator(dut))
dut._log.info("Running test...done")

async def compare(dut):
''' Compares simulated output with predicted output '''
while 1:

await Edge(dut.input) # Test on each new input
await ReadOnly() # Wait for output to settle
assert dut.output == predictor(dut), (
"output ({out}) is not as predicted: XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

dut._log.info(
"output ({out}) is XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

async def stimuli_generator(dut):
''' Generates all data for this tesbench'''
for i in range(2**len(dut.input)):
await start_soon(set_stimuli(dut, i))

https://docs.python.org/3/library/asyncio-task.html

Cocotb keywords

• Cocotb documentation: https://docs.cocotb.org/en/stable/

• Coroutines generally in python: https://docs.python.org/3/library/asyncio-task.html

https://docs.cocotb.org/en/stable/
https://docs.python.org/3/library/asyncio-task.html

Suggested reading, corresponding assignments

Combinational logic

• D&H

– 3.6

– 6.1, 6.2, 6.3 (p105-109)

– (6.4-6.9 p110- 120 .. Not syllabus)

– 6.10 p121-123

– 7.1 p 129-143

–

53

Verification

• D&H:

– 2.1.4 p 27

– 7.2 p 143-148

– 7.3 p 148-153

– 20.1 p 453 – 456

• Oblig 1: «Design Flow»

– See canvas for further instruction.

• Oblig 2: «VHDL»

	Slide 1: IN3160
	Slide 2: Messages:
	Slide 3: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 4: Overview
	Slide 5: Combinational vs Combinatorial
	Slide 6: Combinational Logic Circuit
	Slide 7: VHDL code
	Slide 8: Sequential logic circuit
	Slide 9: Combinational vs sequential code example
	Slide 10: Combinational logic is memoryless
	Slide 11: Can compose digital circuits
	Slide 12: Closure
	Slide 13
	Slide 14: Non CL example :
	Slide 15: Hazards (glitches) in combinatorial circuits
	Slide 16: Hazards in combinatorial design
	Slide 17: Solutions
	Slide 18: Designer vs tool- example
	Slide 19: Schematic Logic Diagram
	Slide 20: Manual optimization
	Slide 21: VHDL that implement the prime function (F)
	Slide 22: VHDL Solution using case
	Slide 23
	Slide 24: More on case and case? «matching case»
	Slide 25: Solutions using concurrent signal assignment
	Slide 26: IN3160, IN4160 Verification part 1
	Slide 27: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 28: Overview
	Slide 29: Verification vs. Testing..
	Slide 30: What is verification?
	Slide 31: Coverage
	Slide 32: Compilation: Analysis and Elaboration
	Slide 33: Simulation
	Slide 34: Cycle based simulation
	Slide 35: Event driven simulation
	Slide 36: Event driven simulation
	Slide 37: Event queues and delta delay example
	Slide 38: RTL simulation practical example
	Slide 39: Testbench example
	Slide 40
	Slide 41: Cocotb testbench
	Slide 42: VHDL Testbench
	Slide 43: Testbench
	Slide 44: VHDL Testbenches
	Slide 45: Simulation of VHDL models
	Slide 46: VHDL simulation cycle I
	Slide 47: VHDL simulation cycle II
	Slide 48: VHDL processes
	Slide 49: Simulation specific code (Non synthesis)
	Slide 50: Cosimulation: Cocotb and python testbenches
	Slide 51: Cocotb: Coroutines, tasks and triggers
	Slide 52: Cocotb keywords
	Slide 53: Suggested reading, corresponding assignments

