
IN 3160, IN4160

Simulation: testbenches, processes, signals and variables 

VHDL: conditional statements and structure

Yngve Hafting



Messages

06.02.2023 3



VHDL Testbench

• Stimuli generator and test environment in 

VHDL 

• Powerful possibilities for simulation 

– File I/O 
• Reading test patterns from file 

• Writing results to file and compare it to a file with the 

correct answers 

• The file with the correct answers can also be read, and 

comparison between the result and the blueprint can be 

executed in the testbench

– Can build in modules for surrounding circuits 
• Especially important if we have a two-way communication 

between UUT (Unit Under Test) and surrounding circuits 

(Handshake signals) 

• Gives simulator independent testbench. 

4



Testbench

• In a test bench you can

– include other modules

(that are more or less verified)

– or provide data for one unit at a time. 

• Often we rely on simulation models

created by others. 

– Bus functional models etc. 

– Can be required to achieve 

certifications in industry..

5

• Note:
– In our cocotb setup, we need one-toplevel VHDL file

• We can make a new toplevel with several models inside



VHDL Testbench structure

• Libraries

• Empty entity (can have generics, but no IO)

• Component declaration for each entity that is a 

part of the test

• Signals for all ports we would like to manipulate

• Component instantiation 

– «DUT» is likely the module we would like to test

• One or more processes that 

– evaluates output vectors

– set input test vectors at specific time intervals

– reports findings and results to screen or file. 

-- Library declarations

library IEEE;

use IEEE.std_logic_1164.all;

use ...

-- Empty entity

entity tb_design is

end entity tb_design;

architecture behavioral of tb_design is

-- component declaration(s) --

component X_OR is ...

end component;

-- signal declaration --

signal ...

begin

-- DUT instantiation --

DUT : x_or

generic map(...) port map(...);

-- standalone tests –

...

-- stimuli generation --

stimuli: process is

begin

...

report ("TESTING FINISHED!");

std.env.stop;

end process;

end architecture behavioral;



Cosimulation: Cocotb and python testbenches

• Cosimulation: Design and testbench simulated independently

• Communication through VPI/VHPI interfaces, represented by cocotb 
”triggers”.

• When the Python code is executing, simulation time is not 
advancing.

• When a trigger is awaited, the testbench waits until the triggered 
condition is satisfied before resuming execution.

• Available triggers include:
– Timer(time, unit): waits for a certain amount of simulation time to pass.

– Edge(signal): waits for a signal to change state (rising or falling edge).

– RisingEdge(signal): waits for the rising edge of a signal.

– FallingEdge(signal): waits for the falling edge of a signal.

– ClockCycles(signal, num): waits for some number of clocks (transitions from 0 to 
1).

Kilde: Ben Rosser (Penn) Cocotb for Cern Micorelectronics 2018 P14,16



Cocotb: Coroutines, tasks and triggers

• All signals in the design hierarchy can be probed and set in python

• "async def" is used when defining coroutines

• Multiple triggers can be used 

– enable tests running independently

• cocotb.start_soon(<coroutine>)

– Starts the coroutine as soon when "awaiting" the next 
time

– Used to start clock generation,  

• await(<task/trigger>) https://docs.python.org/3/library/asyncio-task.html

– Waits until the task is finished or trigger condition occurs

– await ReadOnly() is used to let signals settle after other 
triggers such as await Edge(<dut.signal>) 

» You do not want to read signals before all delta delays are 
completed... 

@cocotb.test()
async def main_test(dut):

""" Starts comparator and stimuli """
dut._log.info("Running test...")
start_soon(compare(dut))
await start_soon(stimuli_generator(dut))
dut._log.info("Running test...done")

async def compare(dut):
''' Compares simulated output with predicted output '''
while 1:
await Edge(dut.input) # Test on each new input
await ReadOnly() # Wait for output to settle
assert dut.output == predictor(dut), (
"output ({out}) is not as predicted: XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

dut._log.info(
"output ({out}) is  XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

async def stimuli_generator(dut):
''' Generates all data for this tesbench'''
for i in range( 2**len(dut.input)):
await start_soon(set_stimuli(dut, i))

https://docs.python.org/3/library/asyncio-task.html


Cocotb keywords

• Cocotb documentation: 
https://docs.cocotb.org/en/stable/

• Coroutines generally in python: 
https://docs.python.org/3/library/asyncio-task.html

https://docs.cocotb.org/en/stable/
https://docs.python.org/3/library/asyncio-task.html


Processes and the event queue (in simulation)

• Simulation uses an event queue to keep track of what happens. 

• A process is invoked as a result of a change in one of the signals in 

the sensitivity list. 

– The whole process is "run" through «within that delta delay».

– Each signal assignment is added to the queue of delta delays
• Only changes in signals that are in the sensitivity list will trigger the process again. 

– Variable updates does not trigger any new events. 
• (They are updated immidiately…)

06.02.2023 10



How processes work with signals and variables...

• Signals 

– Represent physical wires and drivers in 

the architecture

• A wire can only have a single voltage at any 

given time.

– Are updated once in a process invocation

• This happens only at process exit. 

– No intermediate values are held.

– A value that has been changed cannot be read as 

changed within the process. 

• When assigned multiple times within a process, 

the latest will be given priority

– Allows for default values

• Makes inferring storage elements (FFs+latches) 

deterministic and comprehensible.

• Variables

– Variables are local to the process.

• They must be both assigned and read within a process   

– Their value is intended for intermediate 

purposes

• Making code more readable by turning complex 

statements into several simpler statements 

• By taking value(s) that can be used within the 

process 

– They can be given values multiple times 

within a single process invocation

• Doing so- is generally not a good idea

– Placement determines whether they will infer 

storage elements such as latches and flipflops!

• Using variables for storage is considered bad 

practice in most circumstances06.02.2023

11

• A process must work in a predictable, deterministic way 

for both creating and simulating circuits



VHDL processes

• Process sensitivity

– Decides when a process is invoked in simulation

– «SHOULD not» interfer with how HW is made…

• Do not trust this..! 

– Good practice:
• Use keyword all for combinational logic:   process (all) is...

• Use clock (and reset when asynchronous) for sequential logic: process (clk)... 



Sensitivity list

What happens with F?

13

Assume a changes from ‘0’ to ‘1’



Signals vs. variables 

(sequential logic example)

• Exercise: 

• Assume all signals are 0, then 

– signal a changes from 0 to 1.

• On which clock cycles does f 

and g change value; first, 

second, third? 

14

Try for 1 minute: 

signal_var_update : process(clk) 

variable c : std_logic; 

begin 

if rising_edge(clk) then

if a = '1' then

b <= '1'; 

c := '1'; 

else

b <= '0'; 

c := '0'; 

end if; 

if b = '1' then

f <= '1'; 

else

f <= '0'; 

end if; 

if c = '1' then

g <= '1'; 

else

g <= '0'; 

end if; 

end if; 

end process; 
50          40         30          20          10Time’s up...



15

signal_var_update : 

process(clk) 

variable c : std_logic; 

begin 

if rising_edge(clk) then

if a = '1' then

b <= '1'; 

c := '1'; 

else

b <= '0'; 

c := '0'; 

end if; 

if b = '1' then

f <= '1'; 

else

f <= '0'; 

end if; 

if c = '1' then

g <= '1'; 

else

g <= '0'; 

end if; 

end if; 

end process; 

D

CLK

Q
a b

fD

CLK

Q

D

CLK

Q g«c»

‘1’‘1’

NOTE: c could be assigned multiple places in the process. 

How would that affect the diagram..?

Variables update «immediately» 

Signals are assigned «where» the process ends

when the process statement updates as a whole



Digression:

• Simplified...

06.02.2023 16

signal_var_update : 

process(clk) 

variable c : std_logic; 

begin 

if rising_edge(clk) then

if a = '1' then

b <= '1'; 

c := '1'; 

else

b <= '0'; 

c := '0'; 

end if; 

if b = '1' then

f <= '1'; 

else

f <= '0'; 

end if; 

if c = '1' then

g <= '1'; 

else

g <= '0'; 

end if; 

end if; 

end process; 

D

CLK

Q
a b

fD

CLK

Q

D

CLK

Q g«c»

signal_var_update : 

process(clk) 

variable c : std_logic; 

begin 

if rising_edge(clk) then

b <= a;

c := a;      

f <= b;

g <= c; -- g <= a

end if;

end process; 

g



Default values in processes

• Ensures we always have an output value 

(avoiding latches).

• Be reasonable with use of “default” values 

in a process 

– Does only change where it’s necessary 

– This works because processes are compiled 

sequentially… 

• The last assignment within the process will take 

precedence 

– Don’t bury default values within nested ifs...

• Readability and maintainability suffer if you do..  

• Default values are commonly used for state 

machine outputs 

– typically active in one state only…  

17



Signals and variables 

• Signals 

– A signal can be used within the whole architecture 

– Connect to other architectures through the entity ports

– Changes value when simulation exits a process (or statement)

• Variables 

– Variables are declared and only used locally within a process (function or procedure) 

– Assigned using “:=“ (Ex: var := ‘1’;) 

– Unlike a signal the variable changes value immediately in simulation

• Immediately = based on position, read from top to bottom. 

• can have multiple values within one process.

– Variables are useful to keep intermediate results in algorithms 

• Subprograms initialize variables every run. 

• Process variables initialize once, when simulation starts

• Both signals and variables can be used for storage

– Both FFs and latches. 

– Variables that are read «before» written will accomplish this = BAD PRACTICE!… 18

Rule of thumb:

• Signal for all registers (FFs)
"out is a signal that can be read outside the entity"

• variable for everything else that 

does not need to be visible outside…



Simulation of VHDL models

• The time datatype is defined in std.vhd

• The function now returns current simulation time

• Simulation-time starts at 0
INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

19

Implementation

specific



Simulation specific code (Non synthesis)

• Assertions (will be ignored by synthesis tools)

– Can be used to create error messages and notifications based on results

– Ex: assert (e = c) report( "e differs from c") severity error

• Read «assert» as «if not <boolean expression> then» [report…]

• Wait for <time> (will be ignored by synthesis tools)

• Warning..: 

– «wait for / wait on <signal>» can be used in synthesizable code

• Makes sequential (latched or flip-flopped) logic.

• Better: use the IEEE1164 keyword «rising_edge» or «falling_edge» to ensure operation



Suggested reading, corresponding assignments

Combinational logic

• D&H 

– 3.6 

– 6.1, 6.2, 6.3 (p105-109)

– (6.4-6.9 p110- 120 .. Not syllabus)

– 6.10 p121-123

– 7.1 p 129-143

–

21

Verification

• D&H: 

– 2.1.4 p 27

– 7.2 p 143-148

– 7.3 p 148-153

– 20.1 p 453 – 456

• Oblig 1: «Design Flow»

– See canvas for further instruction.

• Oblig 2: «VHDL»



IN 3160, IN4160

VHDL

conditional statements and structural design 

Yngve Hafting



Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of 

advanced digital systems. This includes 

programmable logic circuits, a hardware design 

language and system-on-chip design (processor, 

memory and logic on a chip). Lab assignments 

provide practical experience in how real design can 

be made.

After completion of the course you will:

• understand important principles for design and 

testing of digital systems

• understand the relationship between 

behaviour and different construction criteria

• be able to describe advanced digital systems 

at different levels of detail

• be able to perform simulation and synthesis of 

digital systems.

Goals for this lesson:

• Know conditional statements in VHDL

• . 

• how to implement these structures 

using VHDL

• If, case, when-else, select

• Loops

• Type casting

• Shift operators

• Dataflow vs RTL descriptions

• Know how to generate complex structures 

in VHDL

• generate

06.02.2023 23

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html


Section overview

• VHDL: 

– Sensitivity list

– Signals and variables example

– If, case, when-else, select

– Loops

– Structural coding

• Generate

• Generics

06.02.2023 24

Next lesson: Building blocks
Decoders vs encoders

Decoder

Multiplexer

Encoders

Arbiters

Shifters

Comparators

ROM

RAM



If and case in VHDL Processes

25

• if and case are used much like in other programming 

languages like C, Java etc. 

– Their similarity in syntax may lead to errors if we do not 

understand how they work in digital circuits...

– If-tests can test on multiple signals/variables 

• built in priority 

– Case-tests uses single signal/variable (vector=OK) 

• No built in priority because the same signal are being used 

everywhere in the test



If • Must be in process

• Multiple conditions

• Multiple targets

• prioritizes

• First option has priority
– (think of two-input multiplexers)

• Can be used to infer latches and Flipflops
– FF when edge triggered (if rising_edge(clk) then...)

– Latch when not sufficiently specified!

• This is a trap, avoid this!

• Can be nested using «elsif»

– Can replace any other conditional statement

• Not recommended!

– Avoid deep nesting

– ~4 degrees should be maximum…

06.02.2023 26



If example (all input specified):

06.02.2023 27

process(all) is

begin

if inp1 then

if inp2 then

a <= '1';
b <= '1';

else

a <= '1';
b <= '0';

end if;

else

a <= '0';
end if;

end process;

inp1 inp2 a b

1 1

1 0

0 1

0 0

Always specify all outputs for all conditions of inputs!

inp1 inp2 a b

1 1 1

1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0 Latched

0 0

inp1 inp2 a b

1 1 1 1

1 0 1 0

0 1 0 Latched

0 0 0 Latched

process(all) is

begin

if inp1 then

a <= '1';
b <= inp2;

else

a <= '0';
-- b ass. missing

end if;

end process;



if../case..

28

A

0

1

B

L

K

J

0

1

OUTPUT

L

K

J

OUTPUT

A



If nesting vs. chaining (using elsif)

06.02.2023 29

process(all) is

begin

if (input = 4d"1") then isprime <= '1';
elsif (input = 4d"2") then isprime <= '1';
elsif (input = 4d"3") then isprime <= '1';
...

else isprime <= '0';
end if;

end process;

process(all) is

begin

if (input = 4d"1") then

isprime <= '1';
else

if (input = 4d"2") then

isprime <= '1';
else

if (input = 4d"3") then

isprime <= '1';
...

end if;

end if;

else isprime <= '0';
end if;

end process;



If nesting for priority – danger zone

06.02.2023

30

process(all) is

begin

if (inp1 = a) then

if (inp2 = b) then

if (inp3 = c) then

<statement 1>

<statement 2>

else

<statement 3>

end if;

end if;

else

<statement 4>

end if;

end process;

Sometimes it can make sense to use nesting

- clocked processes and state machines

• It is easy infer latches

• When not all input options are covered

• When some output is not covered for all options

Consider other options when creating CL

- improve readability

- Reduce risk for latches

- It is OK to nest other statements within if… 

- select …

- when …  else

- case …



Example

• Nesting if-statements will

conceal these errors easily, 

thus providing an endless

source of errors

architecture poor of latches is

begin

-- if invec = "11" => outvec is latched

missing_input: process(all) is

begin

if invec = "00" then

outvec <= "0000";

elsif invec = "01" then

outvec <= "1110";

elsif invec = "10" then

outvec <= "0110";

end if;

end process;

-- if input='1' then out2 is latched.

-- if input='0' then out1 is latched.

missing_output: process(all) is

begin

if input then

out1 <= '1';

else

out2 <= '0';

end if;

end process;

end architecture poor;

06.02.2023 31

library ieee;

use ieee.std_logic_1164.all;

entity latches is

port(

invec : in std_logic_vector(1 downto 0);

outvec : out std_logic_vector(3 downto 0);

input : in std_logic;

out1, out2 : out std_logic

);

end entity latches;



Case

• Must be in process

• single input vector

• Multiple targets 

• Every alternative has same priority

• Every option for input must be declared

– ‘when others’ can be used
• be wary of changes in input type…

– Can infer latches too…

• When not defining all outputs for all inputs

• Matching case- «case?»

– Allowes for don’t care’s

06.02.2023

32

process(input) is

begin

case input is

when x"1" | x"2" | x"3" | x"5" | x"7" |x"b" | x"d" =>

isprime <= '1';

when others => isprime <= '0';

end case;

end process;

The typical use-case for case is

state machines. 

Case is excellent when you want to 

set several output vectors

depending on one state vector. 



Case creating latches:

06.02.2023 33

process(input) is

begin

isprime <= '0';
isfour <= '0';
case input is

when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d" =>

isprime <= '1';
isfour <= '0';

when x"4" =>

isprime <= '0';
isfour <= '1';

when others =>

isprime <= '0';

end case;

end process;

null;
]= latch inferred

Default values can be a 

good solution when using

case statements. 

‘null’ statement should

only be used in CL when

using default values for all 

outputs. 



When … else

• Can be used concurrently

(outside processes). 

• Multiple conditions

• Single target

• prioritizes

• Can replace if statements for single target

• Can infer FF’s/latches

• Compact

– Suitable when complexity is low

06.02.2023 34

isprime <=

'1' when input = x"1" else

'1' when input = x"2" else

'1' when input = x"3" else

'1' when input = x"5" else

'1' when input = x"7" else

'1' when input = x"b" else

'1' when input = x"d" else

'0';

q <= '0' when reset else 'd' when rising_edge(clk);

a <= b when en;

^^ always keep ‘else’ in mind…



With … select

• Can be used concurrently

• single input vector

• Single target

– Must have all input cases defined

• Can also infer latches

– Least likely

• Feedback obvious☺

• Compact and readable

06.02.2023 35

with input select isprime <=

'1' when x"1" | x"2" | x"3" | x"5" | x"7" | x"b" | x"d",

'0' when others;

with a select g <=

16d"1" when 16d"1",

16d"4" when 16d"2",

16d"8" when 16d"3",

g when others;



If, case, when … else, with select - summary

• When in doubt…

– Try ‘with…select’

• This will force you to make visible choices. 

• Only use ‘if’… 

– When you need to prioritize conditions…

– and have multiple targets

• Typically used for clocked processes. 

• It is fine to use select… or when/else inside if and case

– Do you need if inside if?.. 

– Case inside case? .. 

– Readability suffers when nesting several levels of if or case

36

Whatever you choose, 

keep the following in mind:

define

• all outputs for

• all conditions

Statement Targets Conditions Process

if Multiple Multiple Required

case Multiple Single Required

when … else Single Multiple Optional

with … select Single Single Optional



Loops in VHDL

• Both simulation and synthesizable code

• Three types

– Simple loop- until exit

– While- loop condition is true

– For loop

• Counted

– Numbers or elements/ ‘range

• Loop parameter static

– Can be increased using ‘next’

– ‘next when <condition>’ 

• ‘exit’+(optional loop_label)

– Can be used in all loops

– Innermost loop is default

– Nested loops: use label
06.02.2023 37

--SIMPLE LOOP--

variable i: integer := 0;

...

loop

statements;

i := i + 1;

exit when i = 10;

end loop;

--WHILE LOOP--

variable i: integer := 0;

...

while i < 10 loop

statements;

i := i + 1;

end loop;

--FOR LOOP--

for i in 1 to 10 loop

statements;

end loop;

--FOR LOOP2—

type frukt_type is (eple, pære, banan);

...

frukt_loop: for f in frukt_type loop

statements;

when <condition1> next frukt_loop;

when <condition2> exit frukt_loop;

end loop;



Entity/architecture

• Entity and architecture are the two 

most fundamental building blocks in 

VHDL

• Entity

– Connection to the surroundings

– Port description
• Input/output/bi-directional signals

• Architecture

– Describes behavior

– An entity can have many architectures

– Can be used to describe the circuit on 

several levels of abstraction:
• Behavioral (for simulation)

• RTL (Register Transfer Level)

• Dataflow

• Structural

– Post synthesis (netlist)

– Post Place & Route (netlist + timing)

38

IN A

IN B

IN C

OUT 1

OUT 2

ENTITY



Generics

• In addition to the port description an 

entity can have a generic description 

• Generics can be used to make 

parameterized components (generic) 

– can be used for structural information

• both synthesis and simulation

– can be used for timing information 

• for simulation only

– Example 1: 
• Time delay can vary between circuits, but the 

behavior is the same 

– Example 2: 
• The number of bits can vary between circuits, 

but the behavior is the same 

39DELAY_LENGTH is a subtype of the type time 

from the predefined (always in use) package “std” 



Structural design

• Every Component instance has an underlying Entity/architecture pair 

• We can easily re-use «entities» 

• We can make a hierarchic design with as many levels we want 

– Try keep design hierarchy manageable...

40



Structural design

• Reuse of modules (entities and architectures) 

• Generic modules (generics) 

– For example scalable bus widths 

– Configurable functionality

• Breaking up big designs to smaller and more 

manageable building blocks 

– Think functional blocks

– Connection of functional blocks 

(entities/components/modules) 

• Easier to collaborate within a design team 

– Well defined interface between modules 

• Any entity-/architecture pair can be used as a 

building block in a structural description 

– Pairing of components
41

IN 1

IN 1

IN m

OUT 1

OUT 2

ENTITY

...

OUT n

...



Structural design (netlist) 
• A netlist is a description of components 

used, and their connections

– Synthesizing is creating a netlist using 

the available primitives for a (PL/ASIC) 

device.

– The top level in larger designs is normally 

purely structural

• Component declaration pick up entities 

from «work» library 

• The last compiled architecture are 

being used unless specified different

• Port mapping: 

– «Association» can be done by position
• Will lead to disasters when making changes. 

– named association is less error prone.

ex: g1: Not1 port map (x=>a, z=>p);

42



Structural design with generate statement 

43

• generate - loop

– can build multiple components .

– requires indexable parameters in some 

connected signals

– non-indexable signals will be connected to all 

instances

• Example: Bidirectional bus 

• generate can be used to conditionally 

build structures

– if and case + generate
• Conditions must be resolved at compile-time

– only constants/generics, no signals

– This is not runtime-reconfiguration... 



06.02.2023 44

Suggested reading

• D&H 7.1- 7.3 p129-153


	Slide 2: IN 3160, IN4160
	Slide 3: Messages
	Slide 4: VHDL Testbench 
	Slide 5: Testbench 
	Slide 6: VHDL Testbench structure
	Slide 7: Cosimulation: Cocotb and python testbenches
	Slide 8: Cocotb: Coroutines, tasks and triggers
	Slide 9: Cocotb keywords
	Slide 10: Processes and the event queue (in simulation)
	Slide 11: How processes work with signals and variables...
	Slide 12: VHDL processes
	Slide 13: Sensitivity list What happens with F? 
	Slide 14: Signals vs. variables  (sequential logic example)
	Slide 15
	Slide 16: Digression:
	Slide 17: Default values in processes
	Slide 18: Signals and variables 
	Slide 19: Simulation of VHDL models
	Slide 20: Simulation specific code (Non synthesis)
	Slide 21: Suggested reading, corresponding assignments
	Slide 22: IN 3160, IN4160
	Slide 23: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html 
	Slide 24: Section overview
	Slide 25:  If and case in VHDL Processes 
	Slide 26: If
	Slide 27: If example (all input specified):
	Slide 28: if../case..
	Slide 29: If nesting vs. chaining (using elsif)
	Slide 30: If nesting for priority – danger zone
	Slide 31: Example 
	Slide 32: Case
	Slide 33: Case creating latches:
	Slide 34: When … else
	Slide 35: With … select
	Slide 36: If, case, when … else, with select - summary
	Slide 37: Loops in VHDL
	Slide 38: Entity/architecture
	Slide 39: Generics 
	Slide 40: Structural design
	Slide 41: Structural design
	Slide 42:  Structural design (netlist) 
	Slide 43: Structural design with generate statement 
	Slide 44: Suggested reading

