| o }/ i | 1 | { 8 il '

UiO ¢ Department of Informatics
University of Oslo

IN 3160, IN4160

Simulation: testbenches, processes, signals and variables

VHDL: conditional statements and structure
Yngve Hafting

UiO ¢ Department of Informatics
University of Oslo

Messages

06.02.2023

UiO ¢ Department of Informatics
University of Oslo

VHDL Testbench

« Stimuli generator and test environment in
VHDL

« Powerful possibilities for simulation
— File 1/O

* Reading test patterns from file

» Writing results to file and compare it to a file with the
correct answers

* The file with the correct answers can also be read, and
comparison between the result and the blueprint can be
executed in the testbench

— Can build in modules for surrounding circuits

» Especially important if we have a two-way communication
between UUT (Unit Under Test) and surrounding circuits
(Handshake signals)

« Gives simulator independent testbench.

UiO ¢ Department of Informatics
University of Oslo

Testbench

» In atest bench you can

— include other modules
(that are more or less verified)

— or provide data for one unit at a time.

« Often we rely on simulation models
created by others.
— Bus functional models etc.

— Can be required to achieve
certifications in industry..

Note:

— In our cocotb setup, we need one-toplevel VHDL file
* We can make a new toplevel with several models inside

) Unit
o under
Stimuli Test Outputs
— uuT
I, Unit Modell av
Strmuli under omkring
tirnuli Test .| liggende krets
UUT Stimuli A
J,:_'.-r___,-"“'_,_._.—-—
Stimuli
..,---""""
sammenkoblinger
Modell av Modell av
omkring omkring
liggende krets liggende krets
B &

Qutputs

UiO ¢ Department of Informatics
University of Oslo

VHDL Testbench structure

» Libraries
« Empty entity (can have generics, but no 10)

« Component declaration for each entity that is a
part of the test
« Signals for all ports we would like to manipulate
« Component instantiation
— «DUT» is likely the module we would like to test
« One or more processes that
— evaluates output vectors
— set input test vectors at specific time intervals
— reports findings and results to screen or file.

-- Library declarations
library IEEE;
use IEEE.std logic 1164.all;
use ...

-- Empty entity
entity tb design is
end entity tb design;

architecture behavioral of tb design is

-- component declaration(s) --
component X OR is ...
end component;

-- signal declaration --
signal ...

begin
-— DUT instantiation --
DUT : x or
generic map(...) port map(...);

-- standalone tests -

-- stimuli generation --
stimuli: process is
begin

report ("TESTING FINISHED!");
std.env.stop;
end process;
end architecture behavioral;

UlO : Department Of Informatics Kilde: Ben Rosser (Penn) Cocotb for Cern Micorelectronics 2018 P14,16

University of Oslo

Cosimulation: Cocotb and python testbenches

[Python Test} {Python Test}
e Cosimulation: Design and testbench simulated independently l

e Communication through VPI/VHPI interfaces, represented by cocotb
"triggers”.

e When the Python code is executing, simulation time is not
advancing.

VPI/VPHI
Interface

e When a trigger is awaited, the testbench waits until the triggered
condition is satisfied before resuming execution.

e Available triggers include:
— Timer(time, unit): waits for a certain amount of simulation time to pass.
— Edge(signal): waits for a signal to change state (rising or falling edge).
— RisingEdge(signal): waits for the rising edge of a signal. O N
— FallingEdge(signal): waits for the falling edge of a signal.

— ClockCycles(signal, num): waits for some number of clocks (transitions from 0 to

1). : 13 DUT!!

A ® = = = = ®m = = *

UiO ¢ Department of Informatics
University of Oslo

Cocotb: Coroutines, tasks and triggers

e All signals in the design hierarchy can be probed and set in python
e "asyncdef" is used when defining coroutines

e Multiple triggers can be used
— enable tests running independently
e cocotb.start_soon(<coroutine>)

— Starts the coroutine as soon when "awaiting" the next
time
— Used to start clock generation,

L avvan(<ta5k/tﬁgger>)mmﬂMm&wmmomBNMWW%deHKMm
— Waits until the task is finished or trigger condition occurs

— await ReadOnly() is used to let signals settle after other
triggers such as await Edge(<dut.signal>)

» You do not want to read signals before all delta delays are
completed...

async def stimuli_generator(dut):

for i in range(2**len(dut.input)):
await start_soon(set_stimuli(dut, 1i))

async def compare(dut):

while 1:
await Edge(dut.input) # Test on each new input
await ReadOnly() # Wait for output to settle
assert dut.output == predictor(dut), (
"output ({out}) is not as predicted: XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))
dut._log.info(
"output ({out}) is XOR({inp})"
.format(out=dut.output.value, inp=dut.input.value))

.test()
async def main_test(dut):

dut._log.info("Running test...")
start_soon(compare(dut))

await start_soon(stimuli_generator(dut))
dut._log.info("Running test...done")

https://docs.python.org/3/library/asyncio-task.html

UiO ¢ Department of Informatics
University of Oslo

Cocotb keywords

« Cocotb documentation:
https://docs.cocotb.org/en/stable/

« Coroutines generally in python:
https://docs.python.org/3/library/asyncio-task.html

https://docs.cocotb.org/en/stable/
https://docs.python.org/3/library/asyncio-task.html

UiO ¢ Department of Informatics
University of Oslo

Processes and the event queue (in simulation)

« Simulation uses an event queue to keep track of what happens.

« A process is invoked as a result of a change in one of the signals in
the sensitivity list.
— The whole process is "run" through «within that delta delay».

— Each signal assignment is added to the queue of delta delays
* Only changes in signals that are in the sensitivity list will trigger the process again.

— Variable updates does not trigger any new events.
* (They are updated immidiately...)

06.02.2023 10

UiO ¢ Department of Informatics
University of Oslo

How processes work with signals and variables...

« A process must work in a predictable, deterministic way
for both creating and simulating circuits

« Signals * Variables
— Represent physical wires and drivers in — Variables are local to the process.
the architecture + They must be both assigned and read within a process
* Awire can only have a single voltage at any — Their value is intended for intermediate
given time. purposes
— Are updated once in a process invocation » Making code more readable by turning complex
* This happens only at process exit. statements into several simpler statements

— No intermediate values are held.

» By taking value(s) that can be used within the
— Avalue that has been changed cannot be read as y 9 ()

changed within the process. process
* When assigned multiple times within a process, — They can be given values multiple times
the latest will be given priority s . . .
— Allows for default values within a single process invocation
+ Makes inferring storage elements (FFs+latches) + Doing so- is generally not a good idea
deterministic and comprehensible. — Placement determines whether they will infer

storage elements such as latches and flipflops!

» Using variables for storage is considered bad
06.02.2023 practice in most circumstances

UiO ¢ Department of Informatics
University of Oslo

VHDL processes

* Process sensitivity
— Decides when a process is invoked in simulation

— «SHOULD not» interfer with how HW is made...
* Do not trust this..!

— Good practice:
« Use keyword all for combinational logic: process (all) is...
» Use clock (and reset when asynchronous) for sequential logic: process (clk)...

UiO ¢ Department of Informatics

i;:r;gE?EiiiLDGIC_J.lE& JALL: Sen S i t i V i ty I i St
entity My thing is What happens Wlth F?

- Assume a changes from ‘0’ to ‘1’

port(i: in S5TD LOGIC:
F: ont S5TD LOGIC

)y :

end entity My thing: signal_update: process(a,b)
begin
if a = "1" then
architecture Behavioral of My thing is b o= T
signal b : STD LOGIC: o
begin else
signal update: process(a) b <= '07;
begin end if;
if o ="_" th == "_"; .
! =t if b = "1" then
else b <= "CO';
f <= 7
end if; ’
else
ifb="_" then F <= "_"; f <= '0°';
glse F <= "0'; end if;
end if;

end process;

end process;

end architecture Behavioral:

& /my_thing/A

UiO ¢ Department of Informatics

University of Oslo

Signals vs. variables
(sequential logic example)

 Exercise:

« Assume all signals are 0, then
— signal a changes from O to 1.

* On which clock cycles does f
and g change value; first,

second, third?

Try for 1 minute:

Time’s up...

signal var update : process(clk)
variable c : std logic;

begin
if rising edge(clk) then
if a = 'l' then
b<="'11";
c :='1";
else
b <= "'0";
c :='0";
end if;
if b = '1l' then
f <= "'1";
else
f <= 1'0";
end if;
if ¢ = '1l"'" then
g <= "'1l";
else
g <= "'0";
end if;
end if;

end process;

UiO ¢ Department of Informatics signal_var update :
University of Oslo process (clk)

variable c : std logic;

begin
a] \ D Q___JE_F:: HD Q— f if rising edge (clk) then
1T v if a = '1' then
b <= "'1";
CLK CLK R
else
«c» D Q— g b <= "'0";
c :="'0";
— clK end if;
if\b = '1' then
: : . £ <= 11"
NOTE: c could be assigned multiple places in the process. else
f <= '(Q" ;
How would that affect the diagram..? end if:
if ¢ = '1l' then
. . . = '1" ;
Variables update «immediately» elsz)
Signals are assigned «where» the process ends g <= 10
when the process statement updates as a whole end if;
end if;

end process;
15

UiO ¢ Department of Informatics

University of Oslo

Digression:

« Simplified...

CLK CLK

«e»

06.02.2023

signal var update
process (clk)

variable c std logic;
begin
if rising edge(clk) then
b <= a;
c = a;
f <= Db;
g<=c; - g<=a

end if;
end process;

signal_var update

process (clk)

variable c std logic;
begin
if rising edge(clk) then
if a = '"1l' then
b <= "'1";
c :="'1";
else
b <= "'0";
c :="'0";
end if;
if b = '"1l' then
f <= "1'1";
else
f <= 1'0";
end if;
if ¢ = '"1l' then
g <="'1";
else
g <= "'0";
end if;
end if;

end process;

16

UiO ¢ Department of Informatics
University of Oslo

Default values in processes

architecture Sequential? of priority is
begin
process (a) is
begin
Qalid <= '123
if a{3)="1" then
y <= "1l1";
elzif a{(Z)="1" then
y <= "10";
elsif a(l)="1" then
y <= "01";
el=zif a{(l)="1" then
y <= "00";
el=se
wvalid <= "0 ;
y <= "0o0";
end if;

end process;
end architecture Sequential?;

Ensures we always have an output value
(avoiding latches).

Be reasonable with use of “default” values
in a process
— Does only change where it's necessary

— This works because processes are compiled
sequentially...

The last assignment within the process will take
precedence

— Don’t bury default values within nested ifs...
Readability and maintainability suffer if you do..

Default values are commonly used for state
machine outputs

— typically active in one state only...

17

UiO ¢ Department of Informatics
University of Oslo

: Rule of thumb:
: « Signal for all reqgisters (FFs)

S' g n al S an d Var | ab I eS "out is a signal that can be read outside the entity”
« Signals « variable for everything else that :
— A signal can be used within the whole architecture : does not need to be visible outside. ..

— Connect to other architectures through the entity ports
— Changes value when simulation exits a process (or statement)

» Variables
— Variables are declared and only used locally within a process (function or procedure)
— Assigned using “:=* (Ex: var := “1°;)

— Unlike a signal the variable changes value immediately in simulation
+ Immediately = based on position, read from top to bottom.
« can have multiple values within one process.

— Variables are useful to keep intermediate results in algorithms
» Subprograms initialize variables every run.
* Process variables initialize once, when simulation starts

« Both signals and variables can be used for storage
— Both FFs and latches.
— Variables that are read «before» written will accomplish this = BAD PRACTICE!... "

UiO ¢ Department of Informatics

University of Oslo

Simulation of VHDL models

« The time datatype is defined in std.vhd
 The function now returns current simulation time

type time is range —-2147T483647 to 2147483647
units
t=;
ps = 1000 f£s;
ng = 1000 ps; .
o Implementation
us = 1000 ns; specific
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

* Simulation-time starts at O

INF3430 / INF4431

Simulation methodology — Simulation of VHDL models
19

UiO ¢ Department of Informatics
University of Oslo

Simulation specific code (Non synthesis)

* Assertions (will be ignored by synthesis tools)
— Can be used to create error messages and notifications based on results

— EX: assert (e = c) report("e differs from c") severity error

* Read «assert» as «if not <boolean expression> then» [report...]

e Wait for <time> (will be ignored by synthesis tools)

« Warning..:
— «wait for / wait on <signal>» can be used in synthesizable code

» Makes sequential (latched or flip-flopped) logic.
» Better: use the IEEE1164 keyword «rising edge» or «falling edge» to ensure operation

UiO ¢ Department of Informatics
University of Oslo

Suggested reading, corresponding assignments

Combinational logic Verification
« D&H « D&H:
— 3.6 — 214p27
— 6.1, 6.2, 6.3 (p105-109) — 7.2p143-148
— (6.4-6.9 p110- 120 .. Not syllabus) — 7.3p 148-153
— 6.10 p121-123 — 20.1p 453 - 456
— 7.1 p 129-143

« Oblig 1: «Design Flow»

— See canvas for further instruction.

* Oblig 2: «VHDL>»

21

| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

IN 3160, IN4160

VHDL
conditional statements and structural design

Yngve Hafting

UiO ¢ Department of Informatics

University of Oslo

Course Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

In this course you will learn about the design of
advanced digital systems. This includes
programmable logic circuits, a hardware design
language and system-on-chip design (processor,
memory and logic on a chip). Lab assignments
provide practical experience in how real design can
be made.

After completion of the course you will:

understand important principles for design and
testing of digital systems

understand the relationship between
behaviour and different construction criteria

be able to describe advanced digital systems
at different levels of detail

be able to perform simulation and synthesis of
digital systems.

06.02.2023

Goals for this lesson:
« Know conditional statements in VHDL

* how to implement these structures
using VHDL
» If, case, when-else, select
* Loops
» Type casting
» Shift operators
+ Dataflow vs RTL descriptions

- Know how to generate complex structures
in VHDL

* generate

23

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Section overview

* VHDL: Next lesson: Building blocks
— Sensitivity list Decoders vs encoders
: : Decoder
— Signals and variables example Multiplexer
— If, case, when-else, select Encoders
— Loops Arbiters
— Structural coding Shifters
. Generate Comparators
« Generics ROM

RAM

06.02.2023 »

UiO ¢ Department of Informatics
University of Oslo

If and case in VHDL Processes

 If and case are used much like in other programming
languages like C, Java etc.

— Their similarity in syntax may lead to errors if we do not
understand how they work in digital circuits...

— If-tests can test on multiple signals/variables
* built in priority
— Case-tests uses single signal/variable (vector=0K)

* No built in priority because the same signal are being used
everywhere in the test

25

UiO ¢ Department of Informatics
University of Oslo

If « Must be in process

« Multiple conditions
* Multiple targets

* prioritizes

First option has priority
— (think of two-input multiplexers)
Can be used to infer latches and Flipflops

— FF when edge triggered (if rising_edge(clk) then..

— Latch when not sufficiently specified!
* This is a trap, avoid this!

Can be nested using «elsif»

— Can replace any other conditional statement
* Not recommended!

— Avoid deep nesting
— ~4 degrees should be maximum...

06.02.2023

)

26

UiO ¢ Department of Informatics
University of Oslo

process (all) is
begin
if inpl then
if inp2 then

If example (all input specified):

o | e | o | b
1 1 1 1
b <= "1"'

0 else
a <= "1"
b <= "0'
end if;
else

Latched

Latched

a<="'0"
end if;
end process;

Always specify all outputs for all conditions of inputs!

06.02.2023

process (all) is

begin
if inpl then
a<="1";
b <= inp2;
else
a<="'0";
-- b ass. missing
end if;

end process;

27

UiO ¢ Department of Informatics
University of Oslo

If../case..

— OUTPUT

entity My thing is !
port(h,B,J,K,L: in 5TD LOGIC;
CUTPUT: out STD LOGIC):
end entity My thing; K'__
architecture prioritized of My thing is
begin
process(all) L —]
begin
if 2 ="' then
CUTPUT <= J;
elzsif E = '.' then
CUTPUT <= K: A
else
CUTPUT <= L;
end if;

end process;
end architecture prioritized;

entity My thing is
port(Z : in 5TD LOGIC VECTOR(
J,E,L: in 5TD LOGIC;
OUTPFUT: out S5TD _LOGIC) ; K
end entity My thing;

downto

architecture nonpri of My thing is

begin L
case A is
when "017" =>
CUTPUT <= J;
when "10" ==

CUTPEUT <= E:
when others =>
CUTPUT <= L;
end case;
end architectuore nonpri:

— OUTPUT

28

UiO ¢ Department of Informatics

University of Oslo

If nesting vs. chaining (using elsif)

process (all) is
begin
if (input = "1") then
isprime <= '1';
else
if (input = "2") then
isprime <= '1';
else
if (input = "3") then

isprime <= ;
end if;
end if;
else isprime <= '0';
end if;
end process;

06.02.2023

process (all) is
begin
if (input =
elsif (input
elsif (input

"1")

else isprime <=

end if;
end process;

then isprime <=

"2")
H3H>

then isprime <=
then isprime <=

29

UiO ¢ Department of Informatics
University of Oslo

If nesting for priority — danger zone

Sometimes it can make sense to use nesting

- clocked processes and state machines E:;§355<311> is
if (inpl = a) then
+ Itis easy infer latches if_f<irzi_>2 Y)th:
. . i inp3 = cC en
* When not all input options are covered <statement 1>
« When some output is not covered for all options Sstarement 2>
else
<statement 3>
Consider other options when creating CL end if;
H 1: end if;
- Improve r_eadablllty ee
- Reduce risk for latches <statement 4>
end if;

end process;

- It is OK to nest other statements within if...
- select ...
- when ... else
- case ...

06.02.2023

UiO ¢ Department of Informatics
University of Oslo

Example

library ieee;
use leece.std logic 1164.all;

entity latches is

port(
invec : in std logic vector(l downto 0);
outvec : out std logic vector (3 downto 0);
input : in std logic;

outl, out2 : out std logic
)
end entity latches;

« Nesting if-statements will
conceal these errors easily,
thus providing an endless
source of errors

06.02.2023

architecture poor of latches is
begin

-— if invec = "11" => outvec is latched
missing input: process(all) is
begin
if invec = "00" then
outvec <= "0000";
elsif invec = "01" then
outvec <= "1110";
elsif invec = "10" then
outvec <= "0110";
end if;

end process;

-— 1f input='1l' then out2 is latched.
-— 1f input='0' then outl is latched.
missing output: process(all) is

begin
if input then
outl <= '1"';
else
out2 <= '0"';
end if;

end process;

end architecture poor;

31

UiO ¢ Department of Informatics
University of Oslo

Case

» Must be in process

* single input vector

* Multiple targets

« Every alternative has same priority

« Every option for input must be declared

- ‘when others’ can be used
* be wary of changes in input type...

— Can infer latches too...
* When not defining all outputs for all inputs

Matching case- «case?»
— Allowes for don’t care’s

06.02.2023

process (input) is
begin

case input is

When lellv ‘ XH2H | X"3" | xv15vv | XH7H ‘vabvv ‘ x"d"

isprime <= "1'
when others => isprime <= '0'
end case;

end process;

The typical use-case for case is
state machines.

Case is excellent when you want to
set several output vectors
depending on one state vector.

32

UiO ¢ Department of Informatics
University of Oslo

Case creating latches:

proc

begi

Default values can be a isp
good solution when using isf
ca

case statements.

‘null’ statement should
only be used in CL when
using default values for all
outputs.

ess (input) is
n

. 1 1
rime <= :
our <= '0';

se input is

when x"1" I x"on

isprime <= '

et ;

when x"4" =>

M

isfour <= "'
when others =>

null;

end case;

end

06.02.2023

process;

’

X

11311

I XH5H I x"7"

= latch inferred

X

"b"

I X"d"

=>

33

UiO ¢ Department of Informatics
University of Oslo

When ... else

« Can be used concurrently
(outside processes). isprime <=
. .. '1' when input = x"1" else
« Multiple conditions '1' when input = x"2" else
. '1' when input = x"3" else
» Single target '1' when input = x"5" else
. e '1' when input = x"7" else
* pI’IOrItIZGS '1l' when input = x"b" else
'1' when input = x"d" else
« Can replace if statements for single target
s Can |nfer FF,S/IatCheS g <= '0' when reset else 'd' when rising edge (clk);
a <= b when en;
- Compact M always keep ‘else’ in mind...

— Suitable when complexity is low

06.02.2023 34

UiO ¢ Department of Informatics
University of Oslo

With ... select

« Can be used concurrently with input select isprime <=
l when X"l" | X"2H | X"3" | X"5" | X"7" | X"b" |
 single input vector |07 when others;

« Single target
— Must have all input cases defined

« Can also infer latches

— Least ||ke|y with a select g <=
16d"1" when 16d"1",
» Feedback obvious@ 16d"4" when 16d4"2",

16d"8" when 164"3",
g when others;

« Compact and readable

06.02.2023 35

UiO ¢ Department of Informatics
University of Oslo

If, case, when ... else, with select - summary
* Whenin doubt...

— Try ‘with..select’

o o] Multiple Multiple Required
+ This will force you to make visible choices.
case Multiple Single Required
when .. else Single Multiple Optional
* Onlyuse ‘if’... with .. select Single Single Optional
— When you need to prioritize conditions...
— and have multiple targets
» Typically used for clocked processes.
* ltisfineto use select.. or when/else inside if and case
— Do you need if inside if?.. Whatever you (.?hOC.)SG, _
_ Case inside case? .. keep the following in mind:
— Readability suffers when nesting several levels of if or case define
 all outputs for
 all conditions

36

UiO ¢ Department of Informatics
University of Oslo

Loops in VHDL

« Both simulation and synthesizable code

* Three types
— Simple loop- until exit
— While- loop condition is true

— For loop
+ Counted

— Numbers or elements/ ‘range
» Loop parameter static

— Can be increased using ‘next’
— ‘next when <condition>’

 ‘exit’+(optional loop label)
— Can be used in all loops

— Innermost loop is default
— Nested loops: use label

06.02.2023

--SIMPLE LOOP--
variable i: integer :

loop

statements;
i:=1i+

exit when i =
end loop;

--WHILE LOOP--
variable i: integer : ;

while i < loop
statements;
i =14+ 1;

end loop;

-—-FOR LOOP--

for i in to loop
statements;

end loop;

--FOR LOOP2—
type frukt type is (eple, pare, banan);

frukt loop: for f in loop
statements;
when <conditionl> next frukt loop;
when <condition2> exit frukt:loop;
end loop;

37

UiO ¢ Department of Informatics
University of Oslo

Entity/architecture

« Entity and architecture are the two
most fundamental building blocks in
VHDL

« Entity
— Connection to the surroundings

— Port description
* Input/output/bi-directional signals

* Architecture
— Describes behavior
— An entity can have many architectures

— Can be used to describe the circuit on

several levels of abstraction:
* Behavioral (for simulation)
* RTL (Register Transfer Level)
+ Dataflow
» Structural
— Post synthesis (netlist)
— Post Place & Route (netlist + timing)

““ mm rION ! 1

entity My thing is

generic(width: integer = Z)
port(INA, INE : in 3TD LOGIC:
INC : in 5TD LOGIC VECTOR(width-1 downto O):
OUT1l: out STD LOGIC:
CUTZ: omt 5TD LOGIC VECTOR(width/Z - 1 downto
y:
end entity My thing:
na ENTITY
OuTl—
— INB
OUT 2 mm
-1 INC

38

)

UiO ¢ Department of Informatics
University of Oslo

Generics

» In addition to the port description an
entity can have a generic description

» (Generics can be used to make
parameterized components (generic)

— can be used for structural information
* both synthesis and simulation

— can be used for timing information
+ for simulation only

— Example 1:

* Time delay can vary between circuits, but the
behavior is the same

— Example 2:

* The number of bits can vary between circuits,
but the behavior is the same

DELAY_LENGTH is a subtype of the type time
from the predefined (alwayvs in use) package “std”

24:
25:
26:
27 :
28:
20:
30:
31:
32:

entity AndZ is

generic (delay : DELAY LENGTH :=

port (x, y : in BIT; z: out BIT);

end entity And2;

architecture ex2 of And2 is
begin

z <= x and y after delay;
end architecture ex2;

architecture Structural of My th 1is

component AndZ
port{ x,v : in EBIT:
end component:
=ignal a,b,c : EIT:
begin
MY COMP1l: AndZ
generic map (delay =»>
port map (x==a, v=xb,
end architecture Structural;

=

ont

us=}) ;
Z==C)

10

o T

L i W

39

ns) ;

r

UiO ¢ Department of Informatics
University of Oslo

Structural design

Component A Component B
Inputs Instans Ul Instans U2

=1

sammenkoblinger

Component C Component A
Instans U3 Instans U4 | Outputs

« Every Component instance has an underlying Entity/architecture pair
« We can easily re-use «entities»

* We can make a hierarchic design with as many levels we want
— Try keep design hierarchy manageabile...

UiO ¢ Department of Informatics

University of Oslo

Structural design I I
Reuse of modules (entities and architectures) ENTITY :["
Generic modules (generics) 1 il I - :__
— For example scalable bus widths |
— Configurable functionality :
Breaking up big designs to smaller and more — Nm ouTaf— | |
manageable building blocks | :——

I

— Think functional blocks

— Connection of functional blocks
(entities/components/modules)

Easier to collaborate within a design team
— Well defined interface between modules

Any entity-/architecture pair can be used as a
building block in a structural description

— Pairing of components

41

UiO ¢ Department of Informatics

25:
26:
27:
28:
29;
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:;
40:
41 :
42 :
43:
44
45:
46:

University of Oslo

Structural design (netlist)

architecture netlist?2 of cnmb_functiﬂn is
component And2 is
port (x, v : in BIT; z: out BIT);
end component And2;

component Or2 is
port (x, ¥ : in BIT; 2z: out BIT);
end component Or2;

component Notl is
port (x : in BIT; z: out BIT);
end component Notl;

signal p, q, r : BIT;

begin
gl: Notl port map (a, p);
gd: And? port map (p, b, q);
g3: And? port map (a, o, r);
gd: Or2 port map (q, r, z);

end architecture netlist2;

A netlist is a description of components
used, and their connections

— Synthesizing is creating a netlist using
the available primitives for a (PL/ASIC)
device.

— The top level in larger designs is normally
purely structural

Component declaration pick up entities
from «work» library

The last compiled architecture are
being used unless specified different

Port mapping:

— «Association» can be done by position
Will lead to disasters when making changes.

— named association is less error prone.
ex: gl: Notl port map (x=>a, z=>p);

42

UiO ¢ Department of Informatics
University of Oslo

Structural design with generate statement

o gener‘ate - |00p bidir bus inst: for 1 in to generate

— can bUIld multlple ComponentS . buft inst: buft port map (data(i),en,din(i}};

— requires indexable parameters in some
connected signals

ibuf inst: ibuf port map (dint(i},data(i)};

end generate;

— non-indexable signals will be connected to all din(0) data(0)
instances en
dint{0)]
. . . din(1) | [™~._data(1)
« Example: Bidirectional bus - -

Db

e generate can be used to conditionally
build structures

- if and case + generate din(15) data(15)
» Conditions must be resolved at compile-time it T,|
— only constants/generics, no signals ~J

— This is not runtime-reconfiguration...

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

« D&H 7.1- 7.3 p129-153

06.02.2023

	Slide 2: IN 3160, IN4160
	Slide 3: Messages
	Slide 4: VHDL Testbench
	Slide 5: Testbench
	Slide 6: VHDL Testbench structure
	Slide 7: Cosimulation: Cocotb and python testbenches
	Slide 8: Cocotb: Coroutines, tasks and triggers
	Slide 9: Cocotb keywords
	Slide 10: Processes and the event queue (in simulation)
	Slide 11: How processes work with signals and variables...
	Slide 12: VHDL processes
	Slide 13: Sensitivity list What happens with F?
	Slide 14: Signals vs. variables (sequential logic example)
	Slide 15
	Slide 16: Digression:
	Slide 17: Default values in processes
	Slide 18: Signals and variables
	Slide 19: Simulation of VHDL models
	Slide 20: Simulation specific code (Non synthesis)
	Slide 21: Suggested reading, corresponding assignments
	Slide 22: IN 3160, IN4160
	Slide 23: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 24: Section overview
	Slide 25: If and case in VHDL Processes
	Slide 26: If
	Slide 27: If example (all input specified):
	Slide 28: if../case..
	Slide 29: If nesting vs. chaining (using elsif)
	Slide 30: If nesting for priority – danger zone
	Slide 31: Example
	Slide 32: Case
	Slide 33: Case creating latches:
	Slide 34: When … else
	Slide 35: With … select
	Slide 36: If, case, when … else, with select - summary
	Slide 37: Loops in VHDL
	Slide 38: Entity/architecture
	Slide 39: Generics
	Slide 40: Structural design
	Slide 41: Structural design
	Slide 42: Structural design (netlist)
	Slide 43: Structural design with generate statement
	Slide 44: Suggested reading

