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Messages

• Monday 27.3 14:15-16:00, Logo: 

– Guest Lecture in FPGA Design by Espen Tallaksen, Founder and CEO EmLogic 

• Master presentation Tuesday 28.3 at 14:15 @ROBIN (4th floor south)

– For all potential applicants to master in Robotics and Intelligent systems 

– Pizza serveres for den som er meldt på

• https://nettskjema.no/a/329253
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Course Goals and Learning Outcome 
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design 

of advanced digital systems. This includes 

programmable logic circuits, a hardware design 

language and system-on-chip design 

(processor, memory and logic on a chip). Lab 

assignments provide practical experience in 

how real design can be made.

After completion of the course you will:

• understand important principles for 

design and testing of digital systems

• understand the relationship between 

behaviour and different construction criteria

• be able to describe advanced digital 

systems at different levels of detail

• be able to perform simulation and 

synthesis of digital systems.

Goals for this lesson:

• Know the principles used in microcoded

state-machines

• Be able to describe how microcoded state 

machines can lead to microprocessors

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html


Microcoded FSMs

• FSM coded using memory (asynch. mem.)
– Can be used for any FSM

– Input and state decides memory output

• Single ROM solution

– Both Mealy and Moore possible depending on decoding…

• General solution is a Mealy machine (Moore is a special case).

– ROM decoding added to critical path for downstream modules.

• Single ROM with output synchronization

– No hazards, but output is delayed by one clock cycle 

• Dual ROM Moore machine

– Separate state and output decoding
• Easier to comprehend

– Requires the least amount of storage
• least impact on downstream critical without synchronizers. 

• Dual ROM Mealy machine

– Both memories has the same address decoding

• No gains in terms of storage or critical path
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Example: Vending machine
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• Specification:

– We want to design a vending machine 

that sells drinks for 40c. 

– The machine accepts 20c and 10c 

coins (all others will be rejected 

mechanically). 

– If 40c are inserted a drink shall be 

dispensed

– If more than 40c is inserted all coins 

are returned

– The machine has two lights

• One to show that it is ready 

• One to show that further coins are needed



ASM diagram & State and ouput table

• If possible- simplify early. 

– Both state and output tables and ASM charts

can be used to find redundancy
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State 10c 20c No coin Ready Coin Dispense Return

S_RDY S_10 S_20 Self 1 0 0 0

S_10 S_20 S_30 Self 0 1 0 0

S_20 S_30 S_DISP Self 0 1 0 0

S_30 S_DISP S_RET Self 0 1 0 0

S_DISP S_RDY S_RDY S_RDY 0 0 1 0

S_RET S_RDY S_RDY S_RDY 0 0 0 1
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Example: Single ROM, extended State and ouput table

• Moore machine implementation:
– One address for every unique 

combination of inputs and state 

• Pro’s
– Can be implemented using fixed hardware

• ROM + a few state registers

– Reprogrammable 

• Con’s
– A lot of duplicated data in ROM

• Output the same for all states

Here: 3x output data in legal states…

– Illegal states need a plan.. 
• Here: input = "11", state = "110", "111" 

=> 14 illegal states, 18 legal
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Memory State Next state Output

Address 
(s+i)

Data 
(n_s+o)

State
No 
coin

10c 20c Ready Coin
Disp-
ense

Re-
turn

000 00 000 1000 S_RDY Self

1 0 0 0000 01 001 1000 S_10

000 10 010 1000 S_20

001 00 001 0100 S_10 Self

0 1 0 0

001 01 010 0100 S_20

001 10 011 0100 S_30

010 00 010 0100 S_20 Self

010 01 011 0100 S_30

010 10 100 0100 S_DISP

011 00 011 0100 S_30 Self

011 00 100 0100 S_DISP

011 00 101 0100 S_RET

100 00 000 0010 S_DISP S_RDY

0 0 1 0100 01 000 0010 S_RDY

100 10 000 0010 S_RDY

101 00 000 0001 S_RET S_RDY

0 0 0 1101 01 000 0001 S_RDY

101 10 000 0001 S_RDY

• Example resource usage:

– 3 state registers (+ 4 output registers if synchronized.) 

– 5 bit address = 32 lines, 7 bit data => 224 bit ROM



Example: Adding a sequencer can reduce storage

Memory State Next state Output

Address 
(s)

Data (b+o) State No coin 10c 20c Ready Coin Dispense Return

000 1 1000 S_RDY Self S_10 S_20 1 0 0 0

001 1 0100 S_10 Self S_20 S_30

0 1 0 0010 1 0100 S_20 Self S_30 S_DISP

011 1 0100 S_30 Self S_DISP S_RET

100 0 0010 S_DISP S_RDY 0 0 1 0

101 0 0001 S_RET S_RDY 0 0 0 1 9
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• We reduce the address space from 2𝑠+𝑖 to 2𝑠

– (ie. Memory has as many instructions as states)

• Here: 

– In branchable states: 

Input decides if we jump 0, 1 or 2 states

– Non branchable state => fixed next state 

next_state <= S_RDY

– Adding 1 branch bit and sequencing logic reduces 

address space from 32 to 8 and data word size 

from 7 to 5. 

– Can we make Mealy with this reduced size ROM?



VHDL 

microcode 

example (1/2):

• Entity as 

earlier

• Read ROM 

from file as 

earlier code
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library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;
use STD.textio.all;

entity vending is
port(

clk, reset, twenty, ten : in std_logic;
ready, coin, dispense, ret : out std_logic);

end entity vending;

architecture microcode of vending is
constant data_width: natural := 5;
constant addr_width: natural := 3;
constant filename: string := "ROM_data_bits.txt";
type memory_array is array(2**addr_width-1 downto 0) of

std_logic_vector(data_width-1 downto 0);

impure function initialize_ROM(file_name: string) return memory_array is
file init_file: text open read_mode is file_name;
variable current_line: line;
variable result: memory_array;

begin
for i in result'range loop

readline(init_file, current_line);
read(current_line, result(i));

end loop;
return result;

end function;

--initialize rom:
constant ROM_DATA: memory_array := initialize_ROM(filename);
signal address: std_logic_vector(addr_width-1 downto 0);
signal data:    std_logic_vector(data_width-1 downto 0);



VHDL microcode example 2/2

11

begin
-- ROM data CL
data <= ROM_DATA(to_integer(unsigned(address)));
address <= state;

-- 1: register assignment:
process (clk, reset) is
begin

if reset then
ready    <= '0';
coin     <= '0';
dispense <= '0';
ret      <= '0';
state    <= (others => '0');

elsif rising_edge(clk) then
ready    <= data(3);
coin     <= data(2);
dispense <= data(1);
ret      <= data(0);
state    <= next_state;

end if;
end process;

-- 2: combinational next_state logic (sequencer)
next_state <=

(others => '0') when not b else
std_logic_vector( unsigned(state) + 1) when ten else
std_logic_vector( unsigned(state) + 2) when twenty else
state;

end architecture microcode;

--state assignment using std_logic (no “state_type”):
signal state, next_state : std_logic_vector(2 downto 0);
alias b : std_logic is data(4);
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ROM (text file content) 

• Address 7 is first line since we read in 

the ‘range order (2**n-1 downto 0).

– To have address 0 first we should read in 
‘reverse_range
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00000

00000

00001

00010

10100

10100

10100

11000 for i in result'range loop
readline(init_file, current_line);
read(current_line, result(i));

end loop;Memory

Address 
(s)

Data (b+o)

000 1 1000

001 1 0100

010 1 0100

011 1 0100

100 0 0010

101 0 0001

• Why do we have two lines with 0?

• What will happen if state is set to 

address 7 og 6..? 



Reducing delay

• What type of FSM is this?

• Will it work?
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begin
-- ROM data CL
data <= ROM_DATA(to_integer(unsigned(address)));
address <= state;

-- output assignment based on state...
ready    <= data(3);
coin     <= data(2);
dispense <= data(1);
ret      <= data(0);

-- 1: sequential state assignment:
state <= (others => '0') when reset else next_state when rising_edge(clk);

-- 2: combinatorial next_state logic
next_state <=

(others => '0') when not b else
std_logic_vector( unsigned(state) + 1) when ten else
std_logic_vector( unsigned(state) + 2) when twenty else
state;

end architecture microcode;

• Can we reduce output delay?



General Sequencer / Microsequencer

• A device that generates addresses

– Typically a counter 

• + some logic for various types of jumping

– Reduces the need to store subsequent addresses

• a sequencer does only make sense when there is some sort of order

– It does not make sense if next state always can be any state 

(ie totally random)

14



Microcoded processors

• A microcoded FSM with a 

sequencer can be seen as a 

microprocessor. 
– ROM stores instructions that are executed 

on each clock cycle. 

– uPC (Microprocessor Counter) is the current 

state. 

• Branching is usually done with several 

bits, to enable different type of usage

• Input is the machine code we want to 

execute

• Processors have other functions and 

dedicated memory

– ALU

– Instruction memory

– Data memory
15



Going from Moore to Mealy (without sequencer)
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State table conversion (legal memory entries shown)

Memory State Next state Output

Address 
(s+i)

Data 
(n_s+o)

State
No 
coin

10c 20c Ready Coin
Disp-
ense

Re-
turn

00 00 00 1000 S_RDY Self

1 0 0 000 01 01 1000 S_10

00 10 10 1000 S_20

01 00 01 0100 S_10 Self 0 1 0 0

01 01 10 0100 S_20

01 10 11 0100 S_30

10 00 10 0100 S_20 Self 0 1 0 0

10 01 11 0100 S_30 0 1 0 0

10 10 00 0010 S_RDY 0 0 1 0

11 00 11 0100 S_30 Self 0 1 0 0

11 01 00 0010 S_RDY 0 0 1 0

11 10 00 0001 S_RDY 0 0 0 1
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Memory State Next state Output

Address 
(s+i)

Data 
(n_s+o)

State
No 
coin

10c 20c Ready Coin
Disp-
ense

Re-
turn

000 00 000 1000 S_RDY Self

1 0 0 0000 01 001 1000 S_10

000 10 010 1000 S_20

001 00 001 0100 S_10 Self

0 1 0 0

001 01 010 0100 S_20

001 10 011 0100 S_30

010 00 010 0100 S_20 Self

010 01 011 0100 S_30

010 10 100 0100 S_DISP

011 00 011 0100 S_30

011 00 100 0100 S_DISP

011 00 101 0100 S_RET

100 00 000 0010 S_DISP S_RDY

0 0 1 0100 01 000 0010 S_RDY

100 10 000 0010 S_RDY

101 00 000 0001 S_RET S_RDY

0 0 0 1101 01 000 0001 S_RDY

101 10 000 0001 S_RDY

– Going from 224 bit ROM to 

• 4 address bits and 6 output bits => 96 bit ROM ( (2^4) * 6)

– State should be msb in address to make comprehensible decoding

– what about unused ROM entries (illegal combinations)?: coming next slide



ROM data 

• ROM data must come in 

correct sequence

– here: 

• 3 legal input combinations per 

stored state

• We must use multiple of 2^n 

(=4), otherwise we write in the 

wrong address

• Comments at line end = OK

– Because we use readline
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001000  S_RDY
011000  S_RDY -> S_10
101000  S_RDY -> S_20
000000  illegal state, no output, next state S_RDY
010100  S_10 -> S_10
100100  S_10 -> S_20
110100  S_10 -> S_30
000000  illegal state, no output, next state S_RDY
100100  S_20 -> S_20
110100  S_20 -> S_30
000010  S_20 -> S_RDY & dispense
000000  illegal state, no output, next state S_RDY
110100  S_30 -> S_30
000010  S_30 -> S_RDY & dispense
000001  S_30 -> S_RDY & retur
000000  illegal state, no output, next state S_RDY



• ROM size changed

– 4 bit address gives 16 entries

• Reading in reverse’range
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library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.numeric_std.all;
use STD.textio.all;

entity vending is
port(

clk, reset, twenty, ten : in std_logic;
ready, coin, dispense, ret : out std_logic);

end entity vending;

architecture microcode_mealy of vending is
constant data_width: natural := 6;
constant addr_width: natural := 4;
constant filename: string := "ROM_mealy_data_bits.txt";
type memory_array is array(2**addr_width-1 downto 0) of

std_logic_vector(data_width-1 downto 0);

impure function initialize_ROM(file_name: string) return memory_array is
file init_file: text open read_mode is file_name;
variable current_line: line;
variable result: memory_array;

begin
for i in result'reverse_range loop

readline(init_file, current_line);
read(current_line, result(i));

end loop;
return result;

end function;

VHDL microcoded

mealy machine



• State only 2 bits

• Address:
– State is MSB in address 

(necessary)

– Input gives rest of address

20

VHDL microcoded

mealy machine
--initialize rom:
constant ROM_DATA: memory_array := initialize_ROM(filename);
signal address: std_logic_vector(addr_width-1 downto 0);
signal data:    std_logic_vector(data_width-1 downto 0);

-- state register declaration
signal state : std_logic_vector(1 downto 0);

begin
-- ROM data CL
data <= ROM_DATA(to_integer(unsigned(address)));
address <= state & twenty & ten ; -- state is MSB

-- output assignment based on state...
ready    <= data(3);
coin     <= data(2);
dispense <= data(1);
ret      <= data(0);

-- sequential state assignment:
state <= (others => '0') when reset else data(5 downto 4) when rising_edge(clk);

end architecture microcode_mealy;
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Which design has which output?

Are they all microcoded? 

Do they do the same?  Does it matter?

Moore with synchronized output

Moore without synchronized output

Mealy (without synchronized output)

Mealy (non-microcoded)



Microcode considerations..

• ROM size can be reduced by

– Separating output CL

– CL can be a separate ROM

• Separate state CL and output CL

– What does the synthesizer do 

with our FSMs?

• Breaks it up into LUTs and 

flipflops

• LUT = small ROM..
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Microprocessors

• Microcoded state machines can and 

has been used to create processors. 

– Early x86 processors were entirely

microcoded (8088, 8086, 80286, 80386).

– Microcoded processors can be patchable..
• => BIOS upgradeable, etc. 

• ROM content dictates instruction set (machine code)

• Modern processors are normally not (fully) microcoded

– Optimization and move towards RISC dictates hardwired circuitry for speed and power

– Method can still be used –
• for complex instructions, variable length instructions

• To ensure updates can be implemented after shipping.. 

• One could argue this is what we actually when using LUT based FPGAs

23

Microcoded FSM
With sequencer / 
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More: https://en.wikipedia.org/wiki/Microcode

https://en.wikipedia.org/wiki/Microcode


Summary of microcoded state machines

• All FSMs can be implemented using 1 ROM + state registers

– The general solution suggests a mealy machine,
• We get Moore having the same output regardless of input in each state

• Using 2 ROMs (separate state and output decoding)

– May reduce memory usage
• when none or only some input are used to determine ouput

• Sequencers, Branching- and Output logic

– may reduce ROM size

– adds structure outside the state ROM. 

– This is one way of implementing processors and instruction sets. 

• Consider using microcode when…

– the state machine is (best) defined by a (large) table

• when changes to the state table likely will happen at some point in the future.  
24



Suggested reading

• D&H 18

– 18 p398-427

Next lesson

• Clock Domain Crossing “CDC”
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