| s . i {] s 7

UiO ¢ Department of Informatics
University of Oslo

IN3160 IN4160
Design Quality and System design

Yngve Hafting 2020

UiO ¢ Department of Informatics
University of Oslo

Kursinfo

« 28.4 (Neste uke): Siste ordinaere forelesning:
Prinsipper for testbenker
5. mai: Q&A / Oppsummering

— Siste sjanse til a stille spagrsmal til faglaerer for eksamen
« Kan ikke love svar pa foresparsler som kommer rett far eksamen.

12. og 19. mai: Eksamensforberedelse med Mojtaba

Siste uke med labveileder er 8.-12. mai (O10 frist er 11.5)

— Evt oblig-forsgk etter det ma enten leveres med video eller avtales
individuelt med retter. (Hver og en ma ta ansvar selv her)

Eksamen er 2. juni

UiO ¢ Department of Informatics
University of Oslo

In this course you will learn about the design
of advanced digital systems. This includes
programmable logic circuits, a hardware design
language and system-on-chip design
(processor, memory and logic on a chip). Lab
assignments provide practical experience in
how real design can be made.

After completion of the course you will:

« understand important principles for design
and testing of digital systems

« understand the relationship between
behaviour and different construction criteria

 be ableto describe advanced digital
systems at different levels of detail

* be able to perform simulation and
synthesis of digital systems.

Course Goals and Learning Outcome

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-enqg.html

Goals for this lesson:

« Be able to describe quality
parameters for digital designs

« Be ableto

» define digital systems at an architectural level

» define digital system specifications at lower
levels

« Know
» principles for dividing systems into modules

Note: This is not covered in lab exercises.

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Quality in designs = Things to keep in mind

e Simplicity

« Understandability

* Modifiability

« Testability / Verifiability

« Extensibility / Scaleability
« Reusability

« Portability

« Maintainability

« Performance
 Efficiency

5
Source for Quality in designs: Ricardo Jasinski: «Effective coding with VHDL»

UiO ¢ Department of Informatics
University of Oslo

Simplicity

« Simple code
— every sequence of statements follow a logical order
— easy to read and maintain

« Complex code
— full of exceptions and special cases

« Simplicity requires effort:

— resist quick fixes to «get the job done»
* rather go: «what is it we are trying to achieve..»
« try make every piece fit

« «managing complexity should pay a major role in every technical
decision» in a project

UiO ¢ Department of Informatics
University of Oslo

Simplicity metrics

 Number of lines and

 Number of statements
— both can be a bit stretched

— correspond well to number of bugs and
how much effort is needed to
understand the code.

* McCabe complexity:
— complexity in nesting "ngstedybde"
— Preferably < 6

— 6-10: consider refactoring (rewrite but
maintain function)

— >10 => rewrite

* Modularity

— Between extremes:
* 1 big containing all vs
+ large number of trivial modules

if X < 0.9 then
return_value := 0.9;
elsif X = 0.9 then
return_value := 0.8;
elsif X = 1.9 then
return_value := 1.0;
else

while (...) loop

(-2
== O=E=E

end loop;
end if;

>

Figure 2.1
Computation of McCabe’s complexity for the ieee.math_real.sqrt function.

The goal is not to have an exact number for
every criteria, but to keep complexity at a
manageable level.

UiO ¢ Department of Informatics
University of Oslo

Understandability

IRL, Code is usually read more often than written
— => |t pays off making it readable for humans

Reduce complexity
Use comprehensive layout scheme

example 2 next slides:

UiO ¢ Department of Informatics

Understandability example 1/2...

University of Oslo

architecture _1 of Count is
signal Q: Unsigned(7 downto 0);

Specification of IO and function

entity Count is

begin
process (Clock, Reset)
constant decade max
constant zero nibble
constant zero_byte
variable next Q

begin
next Q := Q + 1;
if (Mode = 'l') then

if (Q(3 downto 0))
next Q(3 downto
next Q(7 downto
if Q(7 downto 4)

next_Q(7 downto

: Unsigned (3 downto

: Unsigned (3 downto

: Unsigned (7 downto
(

: Unsigned (Q'range) ;

decade_max then
:= zero nibble;

:= Q(7 downto 4) +

decade_max then
) := zero_nibble;

end if ;
end if;
end if;
next_ Q := Unsigned(Data) when not Load;
next Q := Q when Enable;

Q <= zero_byte when not reset else next Q when rising edge (Clock);

end process;
X <= Std_logic_vector(Q);
end;

What are strong and weak points in this design?

) "1001";
) = "0000";
) = "00000000";

7

port (Clock : in Std_logic;
Reset : in Std_logic;
Enable: in Std_logic;
Load : in Std logic;
Mode : in Std _logic;
Data : in Std _logic_vector (7 downto 0);
X : out Std_logic vector (7 downto 0));
end;
Enable | Load | Mode Next X
0 0 - Data
0 1 0 X+1
(binary
counted)
(%] 1 1 X+1
(decimal
counted)
1 - - X

UiO ¢ Department of Informatics
University of Oslo

Understandability example 2/2...

architecture 3 of Count is
constant zero byte: std logic_vector (7 downto 0)

function dec count (input: Unsigned) return Unsigned is

constant decade max : Unsigned (3 downto 0) := "1001";
constant zero_nibble: Unsigned (3 downto 0) := "0000";
variable output : unsigned(input'range);
begin
output :=
input + when input (3 downto

(input (7 downto 4) + 1) & zero nibble when input (7 downto
unsigned (zero byte);
return output;
end function dec_count;
signal Q : Unsigned (7 downto 0);
begin
Q <=
unsigned (X) when Enable else
unsigned (Data) when not Load else
unsigned (X) + when not Mode else
dec count (unsigned (X)) ;

X <=
zero_byte when not reset else
std_logic_vector (Q) when rising edge (Clock);
end;

How is this better or worse than the previous example?

:= "00000000";

) /= decade max else
) /= decade max else

Consider: Being specific vs letting structure decide

Specification of IO and function

entity Count is
port (Clock : in Std_logic;
Reset : in Std_logic;
Enable: in Std_logic;

Load : in Std logic;
Mode : in Std _logic;
Data : in Std _logic_vector (7 downto 0);
X : out Std_logic vector (7 downto 0));
end;
Enable | Load | Mode Next X
0 0 - Data
0 1 0 X+1
(binary
counted)
(%] 1 1 X+1
(decimal
counted)
1 - - X

UiO ¢ Department of Informatics
University of Oslo

Modifiability

A highly modifiable system
— enables localized changes

— prevents ripple effects — avoid duplicate information

 every feature is written in one location only

— (ie when changing bus width in the top module, all other modules
follow without the need for changing every module separately)

— Each module should have a single responsibility
— Minimize connection between modules

11

UiO ¢ Department of Informatics
University of Oslo

Testability (verifiability)

« Components should be testable on their own

— Make testbenches for
* Modules
* Subsystems
* Entire system

— Design modules in ways that are testable

— Design test bench in parallell with module.
» Test Driven Design:
1. Write a failing test
2. Make all tests pass
3. Clean up and remove duplication
4. Repeat until module is finished

12

UiO ¢ Department of Informatics
University of Oslo

Extensibility / Scaleability

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

* The ability to accomodate new P oneaant ot Seoe < nateral :- 2

-- Design wide types

funCtionality Or being rescaled subtype direction_type is unsigned(WORD_SIZE/2 -1 downto 9);

-- Degrees in term of 27~(SIZE) = 360 degrees
constant DEG@ ¢ natural 5
constant DEG6O : natural
constant DEG120 : natural
constant DEG180 : natural

DEG180 + DEG60;

1 t DEG240 : 1
« Use generic and constant ptcase ; petural o ot » becen,
parameterizable mOdU|eS ty;); ii::llj:z:‘:i:i;ygzeiztate for each 60 degree sector in a full circle
— Use packages...

(inactive, S1, S2, S3, S4, S5, S6, illegal);
» Define (sub)types for data-transfer
between modules in a package

()**(WORD_SIZE/))/6;
(2**(WORD_SIZE/2))/3;
(2**(WORD_SIZE/2-1));

function determine_field_state(field_direction: direction_type) return field_state_type;
end package;

package body inverter_package is

function determine_field_state(field_direction: direction_type) return field_state_type is

° Use functlons for reusable CL be\g/::lable field_state : field_state_type;
field_state :=
d Example... S1 when field direction >= DEG@ and field direction < DEG6@ else

S2 when field_direction
S3 when field_direction
S4 when field_direction
S5 when field_direction
S6 when field_direction
return field_state;
end function;

v

<

DEG6@ and field_direction < DEG120 else
DEG120 and field_direction < DEG180 else
<
<

v v

DEG180 and field_direction < DEG240 else
DEG240 and field_direction < DEG30@ else
DEG300 else illegal;

v

v

end inverter_package; 13

UiO ¢ Department of Informatics
University of Oslo

Reusability

* Reusable code can easily be used in other places than it was designed for.
— Using what is tested and proven is often preferred.

» Different levels of reuse:

— Causual/ opportunistic reuse
» using previous design code as template for modification

— Module reuse
» Can work both ways-

— generic modules are harder to design
» use only when you know it will be benificial.

— Formal / Planned reuse
* Using libraries designed for reuse

— requires detailed documentation and testing

— Using Macros or IPs
* Developing a macro generally cost 10x a single use model.

14

UiO ¢ Department of Informatics
University of Oslo

Portability

« The ability to be shifted from one environment to another

« The opposite is tool-dependent or technology-dependent.

« To ensure portability

— avoid use of pragmas or metacomments

* (ie compiler directives that are non-VHDL,
often referring to vendor specific components).

— avoid instantiating specific components in high level code
* isolate code that needs specific instantiation in specific modules.
— (typically used for clock networks etc.)

15

UiO ¢ Department of Informatics
University of Oslo

Maintainability

e The combination of
modifiability, understandability, extensibility and portability

« Maintenance represent on average 60% of cost in SW system
— => Making code easy to understand, then fix or modify is cruicial.

16

UiO ¢ Department of Informatics
University of Oslo

Performance

Better addressed at higher levels rather than tweaking code
— Address issues in the architecture level rather than in code.

Keeping the focus at modularity and modifiability
— ensures performance better than focusing on tuning performance.

Tweaking code can lead to sacrificing portability, maintainability etc.-

— Performance should be adressed when it is known that a module will not be
able to meet performance requirements.
» do not «optimize as you go»
» Normally the compiler will select the best available option
» Measure the performance before resorting to tuning. (synthesis reports)
» Changing technology will change the assumptions you made when tuning.

Effort put into tweaking parts that are not a part of the critical path is
wasted...

17

UiO ¢ Department of Informatics
University of Oslo

Example needless performance tweaking:

« multiplying by 7 tweaked: y <=
(ﬂ'e).’ & a & ﬂ'ee.ﬂ) +
(ﬂ'ee.’.’ & a & ﬂ'e.”) +
(“000” & a);

performs the same or worse than
In typical compillers...
* Which code is easiest to maintain?

 Which code is most readable
— will most likely conceal bugs?...

y <= a¥*7;

18

UiO ¢ Department of Informatics
University of Oslo

Efficiency
 The ratio of work done to the resources used.

« A highly efficient system use less energy or area than a lesser one.

 The same rules as for performance applies:

— Tweaking for efficiency is something you do when
» you have proof that this is what you should do.
— Reports from the synthesis tool will aid you to make such decisions.

19

UiO ¢ Department of Informatics
University of Oslo

Architectural design

« What do we mean by architectural design?
(# VHDL architecture)

« A. decisions
 A. specification

20
Source for Architectural design: Ricardo Jasinski: «Effective coding with VHDL»

UiO ¢ Department of Informatics
University of Oslo

Architectural vs non-architectural design

Architectural design Non-architectural design

Source: Ricardo Jasinski: «Effective coding with VHDL» o

UiO ¢ Department of Informatics
University of Oslo

Architectural decisions (examples)

Clock and reset schemes
— Should all the system inputs and outputs be registered?

— What type of storage elements are allowed?
* FFs, latches, RAM,

— Should reset be synchronous or asynchronous?

— How many clock domains do we need?
 how do we communicate across clock domains?

Computation
— Should computation be done serially, or in parallell?
— Do we need pipelining?
Modules
— how should the different modules communicate
— Do we use ad-hoc connections or an on-chip bus?

* etc.

22

UiO ¢ Department of Informatics Pe

University of Oslo
ARM core:
PID
Architecture specification |
FPGA-system: 7 segment
Sensor readout,
motor control,
should consist of: Dy oupt \\
. Motor
* An overview of the system driver
— Major components and their interactions Quadrature /m:\ |
— understandable to all participants (new and old) in a project N
* High level diagrams Pe/ Userinterface
— block diagram: Major blocks, data paths, memories, key signals N
— information exchange - not details
— context diagram: how the system interacts with surrondings ARM Microcontrolfs -~
. .. PID control
» Design decisions
— Decisions backed by rationale behind FPGA system
 to enable all factors to be considered when making changes Y puse width_ o | motor
* Mapping between requirements and components |>
« Constraints

Quadrature | o cirr:::::izer quadrature_decoder velocity_reader seg7ctrl Seven
— Resources that are allowed/ disallowed encoder sne veocty segmen
» design libraries, positionfmem

+ chip families,

« Design principles that all designers should adhere to. There exists standards for architectural
_ such as organization in layers descriptions, such as ISO/IEC/IEEE 42010
«Systems and software engineering- 23
Architecture description»

UiO ¢ Department of Informatics
University of Oslo

System design

Overview

Process
Specification

Divide and Conquer

25

Source for System design: Dally, Harting, Aamodt: Digital Design using VHDL

UiO ¢ Department of Informatics
University of Oslo

source: D&H 21. Book uses examples and should be read.

System design process (in practice)

« Specification
 Partitioning

« Subsystem interfaces
« Timing

« Module design

* Tuning

26

UiO ¢ Department of Informatics
University of Oslo

System Design — a process

« Specification

— Understand what you need to build
» Divide and conquer (Partitioning)

— Break it down into manageable pieces
» Define interfaces

— Clearly specify every signal between
pieces

— Hide implementation
— Choose representations
« Timing and sequencing
— Work flow / Data flow between modules
— Overall timing — use a table

— Timing of each interface
* —use a simple convention (e.g., valid — ready)

— Add parallelism or pipelines as needed
» Design each module
 Code
* Verify

Iterate back to the top at any step as needed.

l Output / deliverables

Functional description
Simple Block diagram
Block diagram with interface description

Wave diagrams (for data transfers)
Data path diagrams

FSM diagrams and tables
 ASM(D)/bubble and state/input-..

HDL files, Schematics, source code

Testbench reports
Static timing reports

(c) 2005-2012 W. J. Dally
UiO ¢ Department of Informatics
University of Oslo

Specification
« Write the user’'s manual first
« Putting it on paper means that there are no misunderstandings
about operation
— In practice, this also serves to validate the specification with
users/customers
« Spec includes
— Inputs and outputs
— Operating modes
— Visible state
— Discussion of “edge cases”
» Most of design is done writing English-language documents — with
associated drawings. Coding comes later.
— Don't start coding until your design is complete.

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

Divide and Conquer —-common themes

« Task
— Divide system into a network of tasks
— One module per task

¢ State
— Divide system by state

— Separate module for each set of state variables
(each state machine on its own)

* |nterface
— Module for each external interface

(c) 2005-2012 W. J. Dally

UiO ¢ Department of Informatics
University of Oslo

Some comments on Coding

« Don’t start coding until your design is done.
* "Don’t even think about coding until your design is done”...

« Code a separate module for every block in your basic block diagram
« Verify each module before moving on to the next

« Follow good VHDL coding practice...

— Don't forget it is hardware
» synthesizable = a circuit description
* No falling edges, please.. (!)

« Debug the whole system in simulator
— before implementing on hardware

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

« DHA
— 21 p 467-477
— Appendix A p 611-621

« EXercise suggestion:
Try make an architectural specification of your oblig 8 system.

- Does this in any way change your perception of this task?

31

	Slide 2: IN3160 IN4160
	Slide 3: Kursinfo
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Quality in designs = Things to keep in mind
	Slide 6: Simplicity
	Slide 7: Simplicity metrics
	Slide 8: Understandability
	Slide 9
	Slide 10
	Slide 11: Modifiability
	Slide 12: Testability (verifiability)
	Slide 13: Extensibility / Scaleability
	Slide 14: Reusability
	Slide 15: Portability
	Slide 16: Maintainability
	Slide 17: Performance
	Slide 18: Example needless performance tweaking:
	Slide 19: Efficiency
	Slide 20: Architectural design
	Slide 21: Architectural vs non-architectural design
	Slide 22: Architectural decisions (examples)
	Slide 23: Architecture specification
	Slide 25: System design
	Slide 26: System design process (in practice)
	Slide 27: System Design – a process
	Slide 28: Specification
	Slide 29: Divide and Conquer –common themes
	Slide 30: Some comments on Coding
	Slide 31: Suggested reading

