
IN3160 IN4160

Finite State Machines
Yngve Hafting

Messages

• Assignment 6 beta is posted

• FSM-videos from 2017 re-posted with text (autotext)

– Mostly very good (se last pages)

– use the newer source code for reference:
• https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/src-traffic.zip

3

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/src-traffic.zip

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience

in how real design can be made.

After completion of the course you will:

• understand important principles for

design and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• Know different types of state machines
• What is a state machine

• Moore type machines

• Mealy type machines

• To specify state machine functionality using
• State tables

• State diagrams

• Algorithic state machine diagrams

• VHDL

• To know pro’s and con’s for
• Moore and Mealy

• Different state machine representations

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

5

Overview Today

• What is finite state machines (FSM)?

– General FSM

– Moore type FSM

– Mealy

– Synchronized Mealy

• FSM representations

– State diagram

– State output table

– Algorithmic State Machine (ASM) diagrams

• FSM example with VHDL and testbench

Next:

• Datapath state machines

Why/What is an FSM?
• Names

– Finite State Machine "FSM"

– Finite State Automaton "FSA"

– State Machine (Never seen "SM" used for this)

– Finite automaton

• A description of something that happens in a more or

less fixed sequence

– Going through a set of states

• Not an FSM? "ISM" / "ESM"?

– Near infinite or endless amount of states...
• Any computer program could be called an "FSM",

– we do not use the term FSM for SW in general

• Example FSM?

– Traffic light implementation

– Bus controller

– Arbitration algorithm

– Pushbutton user interfaces

• Vending machine

• Washing machine program

– etc

• FSMs can be made in HW, FW or SW. (We'll cover HW)
6

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

x <= 1

S1

A=1T F

S3

B=1T F

A=1T F

y <= 1

x <= 0

S2

FSM-diagrams and descriptions:

We'll get to these...

Input(BA)

/State

𝟏𝟏 𝟏𝟎 𝟎𝟏 𝟎𝟎 x y

S1 S2 S1 S2 S1 1 0

S2 S3 S3 S3 S3 0 0

S3 S3 S3 S2 S1 0 1 or 0

General FSM in HW

• General FSM

– Combinational logic

connected to registers

with feedback

– Can be nearly any

clocked logic

• Counter

• LFSR

• Shiftregister

• Timer

• Microprocessor

• Vending machines…

• Etc.
7

Combinational
logic

State
D

CLK

Q
Input

D

CLK

Q
Combinational

logic

Non FSM sequental logic?

• Strictly speaking any logic using

registers (FFs) are FSMs, but…

• We usually don’t refer to things as

FSMs when they

– Have near-infinite states

• Counters, Timers

• Microprocessors

• LFSR (linear feedback shift registers)

– have other well known names:
• Shift registers, …

– are pure datapath representations
• No feedback after registers

8

Combinational
logic

ouput
D

CLK

Q
Input

Output decoding in FSM

• Two types:

– Moore

• Output is entirely

decoded from state

registers

– Mealy

• Output is decoded

from input and state

registers

9

D

CLK

Q
Combinational

logic

State

Output

Input

Combinational
logic

Moore FSM

• Output will always

be delayed by at

least one clock cycle

– Requires more states

• Output hazards still

present, although

synchronized
10

D

CLK

Q
Output

CL

State
CLD

CLK

Q

Output
CL

State
CL

Mealy FSM

!

• Fast output

• Asynchronous output!

• Hazards!

!

!

Solution: Fully synchronized Mealy FSM

• Input synchronizer: Synchronizes signals from other clock domains

• Output synchronizer: Removes hazards from output

• Technically this is a «Moore» type machine altogether

– But we operate with minimum delay within the state machine design

– Synchronizers can be added in separate modules, processes or statements

– Thus it makes sense to refer to the state machine inside as Mealy type
11

D

CLK

Q

Output
CL

State
CL

D

CLK

QCLK

Input
synchronizer

Output
synchronizer

Moore vs mealy conclusion:

• Can we afford having synchronization:

–MEALY

• If we cannot have other synchronization:

– Moore will be the safest option

• Some FSMs will inherently be Moore type = OK!

12

Three ways of representing state machines

• State diagram

• State (output) table

• Algorithmic state machine (ASM) diagram

13

State diagram

• States

• Transitions between states

• Beside transition arc:

– Descision parameter

– / Mealy output

• Inside bubble:

– Moore output

• Frequently used, but not always with all

parameters.

• Note: Default values often omitted

– Here: default: x, y = 0 (boolean false)
14

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

State output table, input & state table
Input(BA)

/State

𝟏𝟏 𝟏𝟎 𝟎𝟏 𝟎𝟎 x y

S1 S2 S1 S2 S1 1 0

S2 S3 S3 S3 S3 0 0

S3 S3 S3 S2 S1 0 1 or 0

15

• Next state and output as a function of input vs current state..?

• There are many ways to organize tables to get output, but no clear winner

– State and input should intersect to create next state

– Ouput must be stated in a comprehensible manner…
• Complex decisions could be named and explained outside table

Input (AB)

v

S1 S2 S3 < Current state

00 S1

x=1

S3 S1

< Next state / output

01 S1 S3 S3

10 S2 S3 S2 y=1

11 S2 S3 S3

• Moore output is simple

• Mealy outputs becomes functions

or table must be extended

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

𝐴 𝑎𝑛𝑑 ത𝐵

ASM chart (Algorithmic state machine)

• Standardized way of displaying FSMs

– Developed for digital ICs at Berkeley in the

1960’s

• More descriptive than state diagram?

– More structured

• Same information

– Always prioritized conditions

• = Synthesizable

• Works well with boolean conditions for

transitions and assignment

• Can become very large

– when having multiple exit paths for each

state.
16

A=1, B=0
 / y<=1

S1
x<=1

S3

A=0

A=1

B=1

A=0, B=0

S2

x <= 1

S1

A=1T F

S3

B=1T F

A=1T F

y <= 1

x <= 0

S2

ASM (Algorithmic State Machine) block

• The state box represents a state in the FSM,

– State based output is shown inside

(i.e. the Moore outputs).

• The decision box tests an input condition to

determine the exit path of the current ASM

block.

• A conditional output box (“Mealy box”)

– lists conditionally asserted signals.

– Can only be placed after an exit path of a decision box

– (i.e. the Mealy outputs that depends on the state and

input values).

17

Source: RTL hardware design using VHDL, Pong P.Chu

ASM Chart Example 1

• Conditional output (Mealy box) can only be placed after an

exit path of a decision box.

• <= is used for assigning signal values

– Don’t expect full consistency… some will use “=“

• Unless specified (assigned) values are assumed to take

their default values

– Except register operations which is noted with ‘←’

• Registers will be updated on the next clock cycle

• This can cause great confusion (be careful)

• ASMD lecture covers this

• Signals that are boolean are assumed set or found active

(‘1’) when mentioned alone.

– Here: we could have seen

• “y1” in place of “y1<=‘1’” and

• “not b” in place of “b=0”
18

ASM chart example 2, Mealy vs Moore output

 C=0 C=1

 C=0 C=1

Two ASM FSM rules apply

1. For any given input combination,

there is one unique exit path from

the current ASM block.

2. The exit path of an ASM block

must always lead to a state box.

- Can be the state box of the current or

any other ASM block.

20

Common Errors in ASM Charts

This case violates rule one since it is

two exit paths that are not governed

by an input

You cannot enter two states at the

same time in one state machine…

21

The case above violates the first

rule since there is no exit path

when the condition in the

decision box is false.

A state shall be entered each

clock cycle...

Common errors in ASM charts (2/2):

• exit path of the S1 block does not

go into a state box

• If we need the same output logic, it

must be copied for S1.

– (unless S1 is redundant and can be

removed entirely)

22

S0

A=1

T

F

S1

B=1T F

y <= 1

Example State Machine: Vending Machine

• Specification:

– We want to design a vending machine

that sells drinks for 40c.

– The machine accepts 20c and 10c

coins (all others will be rejected

mechanically).

– If 40c are inserted a drink shall be

dispensed

– If more than 40c is inserted all coins

are returned

– The machine has two lights

• One to show that it is ready

• One to show that further coins are needed

23

• Work order:

– Define the entity

– Find/Define the states

• State diagram, ASM chart or both?

– How to find redundant states?

• Create an ASM chart

– Be aware of Moore and mealy output

– Once you have the ASM chart, with as

few possible states: start coding

– Decide before synthesizing:

• One hot?

– (FF’s are cheap in an FPGA)

• Binary counter?

• Gray code?

– (minimum noise / switching current)

• can the synthesizer decide for me?

Example: Vending machine

24

Ready

10

20

30

Dispense

Return
coins

• Sketch state

diagram and

entity

• May give you

enough overview

that you can

simplify

10C

20C

Dispense

Ready

Return

Coin

clk

reset

ASM diagram & State and ouput table

• If possible- simplify early.

– Both state and output tables and ASM charts

can be used to find redundancy

25

State 10c 20c No coin Ready Coin Dispense Return

S_RDY S_10 S_20 Self 1 0 0 0

S_10 S_20 S_30 Self 0 1 0 0

S_20 S_30 S_DISP Self 0 1 0 0

S_30 S_DISP S_RET Self 0 1 0 0

S_DISP S_RDY S_RDY S_RDY 0 0 1 0

S_RET S_RDY S_RDY S_RDY 0 0 0 1

10?

20?

F

F

T

T

10? T

Coin = ‘1’

S_30

Coin = ‘1’

S_20

Coin = ‘1’

S_10

Ready = ‘1’

S_RDY

20?

20?

F

10?

20?

F
T

T

F

Dispense = ‘1’

S_DISP

T

10?
F

T

F

Return = ‘1’

S_RET

T

F

Redundant states in ASM

• If we start out as a descision tree

-always branching to new states-

we will get redundant states.

• State can be removed when

– (descisions for) next state and output is

equal to another state

26

10?

20?

F

F

T

T

10? F

Coin = 1

S_20 ?

Coin = 1

S_10

Ready = 1

S_RDY

T

10?

Coin = 1

S_20

10?

20? 20?

F FT T

30..30..
T FF

Dispense Dispense

T

S_20 S_20 ?

...

10?

20?

F

F

T

T

10? F

Coin = 1

S_10

Ready = 1

S_RDY

T

Coin = 1

S_20

10?

20?

FT

30..
T F

Dispense S_20 S_20 ?

...
Coin = 1

S_20 ?

10?

20?

FT

30..
F

Dispense

T

Redundant states in state diagram

• Can be easier to spot

– We need to know all output based on

state to be sure

27

Ready

10

20

30

Dispense

Return

20

Ready

10

20

30

Dispense

Return

Redundant states in output table

• Can be difficult to spot…

– Names may confound

– Both state and output

must be checked

• Here: otherwise DISP =

RET ..?

– It may be useful to use

«self» rather than state

name when going to the

same state.

28

State 10c 20c No coin Transition

to self

Ready Coin Dispense Return

S_RDY S_10 S_20 S_RDY Yes 1 0 0 0

S_10 S_20_2 S_30 S_10 Yes 0 1 0 0

S_20 S_30 S_DISP S_20 Yes 0 1 0 0

S_20_2 S_30_2 S_DISP S_20_2 Yes 0 1 0 0

S_30 S_DISP S_RET S_30 Yes 0 1 0 0

S_30_2 S_DISP S_RET S_30 Yes 0 1 0 0

S_DISP - - S_RDY No 0 0 1 0

S_RET - - S_RDY No 0 0 0 1

• States that we only sweep through are candidates for creating mealy outputs…

Self

Self

Self

Self

Self

Self

10?

20?

F

F

T

T

10? T

Coin = 1

S_30

Coin = 1

S_20

Coin = 1

S_10

Ready = 1

S_RDY

20?

20?

F

10?

20?

F
T

T

F

Dispense = 1

S_DISP

T

10?
F

T

F

Return = 1

S_RET

T

F

Default values:
Ready <= 0
Coin <= 0
Dispense <= 0
Return <= 0

Ready

10

20

30

Dispense

Return
coins

29

Ready

10

20

30

/Dispense

/Dispense

/Return

Ready

S_10
coin

S_20
coin

S_30
coin

10/Dispense

20/Dispense

20/Return

10

10

20

20

10

0

0

0

10?

20?

F

F

T

T

10? T

Coin

S_30

Coin

S_20

Coin

S_10

Ready

S_RDY

20?

20?

F

10?

20?

FT

T

FT

10?F T

F T

F

Default values:
Ready <= 0
Coin <= 0
Dispense <= 0
Return <= 0

Dispense

Return

Dispense

Mealy optimization

Identify states that are run

through in one clock cycle

without descision boxes

1. Is the output depending on

being decoded in a different

state than the previous?

2. Does timing requirements

that dictates a separate

state?

• If no on both:

create a Mealy-ouput box, in

place of the old state

Coding state machine using VHDL

• Make your own states as «enumerated» type.

– This simplifies reading a lot (example next slide)

• Use three processes / statements

1. One for assigning the state = declaring FF's
• based clock (and reset when asynchronous reset)

2. One for deciding the next state (next_state CL).
• based on previous state and inputs

3. One for setting outputs (ouput CL)
• based present state (and inputs if Mealy type)

– Sometimes 2. and 3. can be combined
• In simple cases where the output has very little decoding

30

FSM in VHDL 1/2

• Continues next slide

31

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity vending is

port(

clk, reset, twenty, ten : in std_logic;

ready, coin, dispense, ret : out std_logic);

end entity vending;

architecture asm of vending is

type state_type is (S_RDY, S_10, S_20, S_30);

signal present_state, next_state : state_type;

begin

-- 1: sequential state assignment:

present_state <=

S_RDY when reset else

next_state when rising_edge(clk);

-- 2: combinatorial next_state logic

next_state_CL: process(twenty, ten, present_state) is

begin

case present_state is

when S_RDY =>

next_state <=

S_10 when ten else

S_20 when twenty else

S_RDY;

when S_10 =>

next_state <=

S_20 when ten else

S_30 when twenty else

S_10;

when S_20 =>

next_state <=

S_30 when ten else

S_RDY when twenty else

S_20;

when S_30 =>

next_state <= S_30 when not(ten or twenty) else S_RDY;

end case;

end process next_state_CL;

FSM in VHDL 2/2

• Optional alternative replaces 3

– Consider how compactness

affects readability

32

-- 3: combinatorial output logic

output_CL: process(all) is

begin

--default output values

ready <= '0';
dispense <= '0';
ret <= '0';
coin <= '0';
-- state based assignment

case present_state is

when S_RDY =>

ready <= '1';
when S_10 =>

coin <= '1';
when S_20 =>

coin <= '1';
dispense <= '1' when twenty;

when S_30 =>

coin <= '1';
dispense <= '1' when ten;

ret <= '1' when twenty;

end case;

end process output_CL;

-- ALTERNATIVE ouput_CL:

ready <= '1' when present_state = S_RDY else '0';
coin <= not ready;

dispense <= '1' when
(present_state = S_20 and twenty = '1') or

(present_state = S_30 and ten = '1') else '0';
ret <= '1' when (present_state = S_30 and twenty = '1') else '0';

end architecture asm;

Test bench for FSM

• Uses file I/O template from previous lecture-

• Input procedural

• Output in a separate process

33

34

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

use STD.textio.all;

entity tb_vending is

end entity;

architecture behavioral of tb_vending is

component vending is

port(

clk, reset, twenty, ten : in std_logic;

ready, coin, dispense, ret : out std_logic);

end component;

signal clk, reset, twenty, ten: std_logic := '0';
signal ready, coin, dispense, ret: std_logic;

constant CLK_PERIOD : time := 10 ns;

begin

DUT: vending

port map(

clk => clk,

reset => reset,

twenty => twenty,

ten => ten,

ready => ready,

coin => coin,

dispense => dispense,

ret => ret);

clk <= not clk after CLK_PERIOD/2;

check_output: process(clk) is

variable in_machine: integer := 0;

constant COIN_DIGITS : integer := 3;

constant SPACER : integer := 1;

-- log output file

file log_file: text open write_mode is "vending_log.txt";

variable log_line: line;

begin

if rising_edge(clk) then

--keep track of coins

if ret = '1' or dispense = '1' then
in_machine := 0;

elsif ten then

in_machine := in_machine + 10;

elsif twenty then

in_machine := in_machine + 10;

end if;

--report errors to console

assert (in_machine < 40)

report ("coin overflow: ", integer'image(in_machine))
severity error;

-- report to file

write(log_line, in_machine, field => COIN_DIGITS);

write(log_line, ready, field => + 2*SPACER);

write(log_line, coin, field => + 2*SPACER);

write(log_line, dispense, field => + 2*SPACER);

write(log_line, ret, field => + 2*SPACER);

writeline(log_file, log_line);

end if;

end process;

Stimuli next slide

TB stimuli:

• Usually one main process

for stimuli

– Except for clock generation

• Use procedures for file IO

• Testing can be done for

each new input data or in a

separate process...

35

process is

type t_coin is (te, tw); -- ten, twenty abbreviated

file stimuli_file: text open read_mode is "vending_stimuli.txt";

variable stimuli_line: line;

variable stimuli_coin: t_coin;

variable stimuli_periods: integer := 0;

variable str : string(2 downto 1);

procedure set_stimuli is

begin

readline(stimuli_file, stimuli_line);

read(stimuli_line, str);

stimuli_coin := t_coin'value(str);
read(stimuli_line, stimuli_periods);

ten <= '1' when stimuli_coin = te else '0';
twenty <= '1' when stimuli_coin = tw else '0';

end procedure;

begin

-- initial reset:

wait for CLK_PERIOD/2;

reset <= '1';
wait for CLK_PERIOD;

reset <= '0';
wait for CLK_PERIOD;

while not endfile(stimuli_file) loop

set_stimuli;

wait for CLK_PERIOD;

ten <= '0';
twenty <= '0';
wait for CLK_PERIOD*stimuli_periods;

end loop;

file_close(stimuli_file);

-- file_close(log_file);

report ("Testing finished!");

std.env.stop;

end process;

end architecture;

Video resources
(Created for INF3430, updated with autotext 2023)

• FSM intro (37s)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/0-fsm-intro.mp4?vrtx=view-as-webpage

• FSM Basics (2:05)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/1-fsm.mp4?vrtx=view-as-webpage

• ASM State Diagrams (7:44)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/2-asm.mp4?vrtx=view-as-webpage

• Note: 3:50 register operation ‘←’ not sufficiently described

• ASM Examples (5:30)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/2b-asm-examples.mp4?vrtx=view-as-webpage

• FSM Synthesis to VHDL (4:43)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/3-fsm-synthesis.mp4?vrtx=view-as-webpage

• FSM Example (6:56)
– https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/4-fsm-example.mp4?vrtx=view-as-webpage

• Note: Legacy vhdl code presented. Download updated code (2023) for state machines here:

• https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/src-traffic.zip

36

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/0-fsm-intro.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/1-fsm.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/2-asm.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/2b-asm-examples.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/3-fsm-synthesis.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/4-fsm-example.mp4?vrtx=view-as-webpage
https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/fsm-videoer/src-traffic.zip

Suggested reading

• D&H:

– 14 p305-324

– 16 p344-372

37

Some (free) tools for making charts

• https://app.diagrams.net/ (browser based)

• www.lucidchart.com (browser based, signup)

• Dia (Small, requires installation, all platform GNU)

• LibreOffice (large, GNU)

• http://diagramo.com/ (browser based, signup)

https://app.diagrams.net/
http://www.lucidchart.com/
http://dia-installer.de/
https://no.libreoffice.org/
http://diagramo.com/

	Slide 2: IN3160 IN4160
	Slide 3: Messages
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Overview Today
	Slide 6: Why/What is an FSM?
	Slide 7: General FSM in HW
	Slide 8: Non FSM sequental logic?
	Slide 9: Output decoding in FSM
	Slide 10: Moore FSM
	Slide 11: Solution: Fully synchronized Mealy FSM
	Slide 12: Moore vs mealy conclusion:
	Slide 13: Three ways of representing state machines
	Slide 14: State diagram
	Slide 15: State output table, input & state table
	Slide 16: ASM chart (Algorithmic state machine)
	Slide 17: ASM (Algorithmic State Machine) block
	Slide 18: ASM Chart Example 1
	Slide 19: ASM chart example 2, Mealy vs Moore output
	Slide 20: Two ASM FSM rules apply
	Slide 21: Common Errors in ASM Charts
	Slide 22: Common errors in ASM charts (2/2):
	Slide 23: Example State Machine: Vending Machine
	Slide 24: Example: Vending machine
	Slide 25: ASM diagram & State and ouput table
	Slide 26: Redundant states in ASM
	Slide 27: Redundant states in state diagram
	Slide 28: Redundant states in output table
	Slide 29: Mealy optimization
	Slide 30: Coding state machine using VHDL
	Slide 31: FSM in VHDL 1/2
	Slide 32: FSM in VHDL 2/2
	Slide 33: Test bench for FSM
	Slide 34
	Slide 35: TB stimuli:
	Slide 36: Video resources (Created for INF3430, updated with autotext 2023)
	Slide 37: Suggested reading

