& f -'.”,7 /I ey | ! ‘ ; g p

UiO ¢ Department of Informatics
University of Oslo

IN3160, IN4160
Timing, pipelining
Yngve Hafting

UiO ¢ Department of Informatics
University of Oslo

Beskjeder:

13.04.2023

Ui0: Department of Informatics Coyrse Goals and Learning Outcome

University of Oslo
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design of Goals for this lesson:
advanced digital systems. This includes

programmable logic circuits, a hardware design * Know terms and principles for

language and system-on-chip design (processor, * timing
memory and logic on a chip). Lab assignments « flow control
provide practical experience in how real design can C e

be made. * pipelining

After completion of the course you will:

» understand important principles for design and
testing of digital systems

« understand the relationship between behaviour
and different construction criteria

* Dbe able to describe advanced digital systems at
different levels of detail

* be able to perform simulation and synthesis of
digital systems.

13.04.2023 4

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

UiO ¢ Department of Informatics
University of Oslo

Interface Timing

 How do you pass data from one module to another?
— Open loop
— Flow control
— Serialized

data .
Sender | Receiver

Source: Digital Design using VHDL, Dally, Harting, Aamodt

UiO ¢ Department of Informatics
University of Oslo

Always Valid Timing

« Current data always valid

Sender

data

« Measurment data, such as
« Temperature
 Position
« 010 PID control

L

Receiver

: Ete Ly L I U L O L W A Y A W A

» Static/ constant data

« Dropping data not critical
» Sequence does not matter

* When crossing clock domains =>
« Synchronization needed to avoid metastability

« Synchronization needed to avoid errors
* Ex. error: 1000 => 0111 being read as 1111

» Can be passed without flow control

« Signals unchanged from one cycle to the next is valid

* No need to re-send data if there are errors.

UiO ¢ Department of Informatics
University of Oslo

Periodically Valid Timing data
Sender | Receiver

« Data only valid in predefined intervals
« Ex: an 8 bit shifter has one byte ready every 8" clock cycle.
« Ex: Cryptographic keys that need to be decrypted using the previous key

« Dropping data may be unacceptable

ck [|| L L I L

* Flow control is required when
[)
crossing clock domains data A LB | (C}—

UiO ¢ Department of Informatics
University of Oslo

Flow Control

* When crossing clock domains:

* Multiplexer / Enable synchronizer
» data valid signal (=data ready..)

« Handshake synchronizer
» Data valid + receiver ready
(= request + acknowledge)

« FIFO synchronizer

* Flow control is also used between
modules within a clock domain

« CDC is considered being taken
care of for the rest of this lecture.

cycle

clk
data
valid

ready

transfer

valid
ready
Sender Receiver
data
1 2 3 5 8

UiO ¢ Department of Informatics
University of Oslo

valid
_ ready
FIOW ContrOI types Sender Receiver
data
« Valid — Transmitter (Tx) has data available
« Ready — Receiver (Rx) is able to take data
» Push flow control cyce 12 3 4 5 6 8
| assume R aluays Reatdy S aValaiaiaWalalnl

 Pull flow control

— assume Tx always Valid data A (B) (C Y\ D)

transfer @

valid :f \ : / \ /

UiO ¢ Department of Informatics
University of Oslo

Serialization

« Serialization is often used when dealing with large portions of data
» Further parallelization is not practical.
* Requires some sort of convention on how data is sent

cycle 1 2 3 4 5 6 7 8 9 10 11 12 13

clk | : : : : : : :

data { @ Y2 Y 2 Y a0 Y b B Y\ b Y bo —— o Y& o))

frame j_\ /_\ /_\

» Frame signals start of new serial frame (here: a packet of 4 words)
* An example of push-flow control.
* Flow control can be at frame granularity or word granularity

UiO ¢ Department of Informatics
University of Oslo

Serialization with word granularity flow control

cycle | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
S8 NV Yy Y Y [O
bus ~(cont X addry) addr,)} data;) data,) data;) data;)} data,)

frame ’ \ i i i i i i i
ready L

« Two way flow-control

Predefined packet size
New data only when receiver is ready

UiO ¢ Department of Informatics
University of Oslo

Packet size

Often the packet size is given
— ex. UART: usually 8 bit character+(parity)+start/stop bit

‘\startbitK bit 0 X bit 1 X bit 2 X bit 3 X bit 4 X bit 5 X bit 6 X bit 7 YStopbit

Varying packet sizes requires logic that determines
packet size from data or additional flow control.

Inside a chip, data is mostly passed in parallell

Outside a chip it is normal to serialize
(to reduce number of wires, avoid the n-bit problem)

13.04.2023

12

UiO ¢ Department of Informatics
University of Oslo

Isochronous timing

« Data is sent with regular time intervals

» Isochronous timing is required when data "must” be read in a
certain timeframe

— Examples:
» Screen output when playing video
» Music or speech

« EXx. USB devices can be set up having isochronous endpoints
which ensures a certain amount of data always can be
transfered from a device, such as a microphone.

— The USB host will then have to set up interrupts to poll the data
from the device regularly.

13.04.2023

13

UiO ¢ Department of Informatics
University of Oslo

Interface timing summary

Always vs Periodically valid

Flow control (FC)
» Valid: Push
* Ready: Pull

— CDC synchronization may use Flow control
— Periodically valid signals need FC regardless of CDC

Serialization uses FC
— Frame+ready
— Packet sizes must be defined

Isochronous timing
— Periodically sending
— For time-critical data, such as AV-streams.

13.04.2023

14

UiO ¢ Department of Informatics
University of Oslo

Pipelining content

« Terminology

 Parallelization vs pipelining

« Example: 32 bit ripple carry adder
« Stalls

« Load Balance

* Resource sharing

13.04.2023

15

UiO ¢ Department of Informatics
University of Oslo

Pipelining terms

e Throughput (©)
— tasks performed per unit time
« MIPS : Millions instructions per second

 FLOPS : Floating point operations per second
* etc

« Latency (T)
— The time needed to complete one task fully

13.04.2023

16

UiO ¢ Department of Informatics
University of Oslo

Parallellized vs pipelined =
T T I A e Y
[P] LA | | N4
é | — | | = | Join
& [Ps__] L[P | | +
[P2 | [P4 [|
. . o~ M e e HE

a) Needs 4x HW to achieve compared to solving one task
— Here: Throughput, © = 4x
b) Needs registers for each pipeline stage

— can run on a higher clock frequency than a).
— O <4x

13.04.2023 17

UiO ¢ Department of Informatics
University of Oslo

Pipelining of 32 bit ripple carry adder

Without pipelining:
» Assume each FA uses 100ps
=>T = 3200ps = 3.2ns
* © = 1loperation/(3.2ns) = 0,3125 Gops

~—— Pipelining: o c32
8 . . b E o o 1 Al
bt « Organizeinto4 —— S20.16 Add registers Bisd L
T L £ riopl agize [P between each T T g Sz316
groups of ripple- _ group aszs | | ||
3 carry adders bogs (2 =
0: Addl—S23:16 D23:16 =l
. S * Result next page Add e
~ prs A23:16
N @
b1 b15:8 = SI
iy FA si R Add Si5:8 Dis: ol
158 S15:
ais5:8 hee 1] =
bo ° b 5 |
7.0 3
a0 FA 2D B Add = bz - s
3 - Addb——1 1 | 7:0
c0 c0 | :
c0]

13.04.2023 18

UiO ¢ Department of Informatics
University of Oslo

32 bit ripple carry adder continued

tra: 100 ps

c32R3 c32R4
bR034.54 3 bR134.54 ; bR2;,.54 o5 < l tReg' 200 pS
(& 7 7 7 L]
8 8 8 8 Add ', ,, SR423:16
aR034.54 L aR13.04 » aR2;,.54 ,, » 8 8
s . C24R2 . |
bROL.¢ . bR1 5.4 | . I tcycle = 8 tFA + tReg
B B B SR353:16 — SRy, 16 800 + 200 1
m m Addl—+ & - #— @ 7 - = =
aR0,5.16 . % aR1y,.46 . % . 8 % 8 S 8 pS pS nS
8 E lc1eR18 %’/ 8 | T 8
bRO, 5.4 | = | c\n ™ = A
B = B Add -« = sR2;54 i = SR3;5, ,, ~ SR4,5.4 Latency T - 4 tcycle
aR0;s £ P 8 8 8 8 -
% % =4ns
¢8RO [
bRO,., I
:8 Add -~ sFH70 > sR27:0 » 5}3{:’,7:0 - » sF¥47_,0
R0y 8 3 3 3 3 G =]_Gops
8 A A A A
cORO

Try: What would be the latency and throughput if we use four bits per pipeline stage?
teycle = Hpa+ treg = 400pS + 200ps = 600 ps

* Latency T= 8%t = 600ps*8 = 4,8ns

* Throughput © = 10p/600ps = 1,67 Gops

19

UiO ¢ Department of Informatics

University of Oslo Pl p el | n eS

* Pipelines may have stall and idle functionality...
« When should these happen? How can you prevent them?
« Max latency vs. average latency (absorbing bursts)

—> A —> B —>
10 cycles 5 or 15 cycles
A B
A SHl = I
A B

(c) 2005-2012 W. J. Dally A "S" B “|"E
[}

UiO ¢ Department of Informatics
University of Oslo

Pipeline stalls (1)

« Variable execution time may
occur in larger systems.

— Ex: A floating point operation in
a series of calculations that
mostly are integer based

* Flow control is needed in the

pipeline
— Each stage has its own

data valid and ready signal

13.04.2023

readyR;
rRsl A

dataR;

valid

Stage

A

ready;

S w N —

\,
»0 _
dR,, validR,
Mux -
> 1
A
(b)
Time _
2 3 4 5 6 7
C C C D E F
B B B C D E
ZI[A T|la T|| B c D
XA XA A B €

21

UiO ¢ Department of Informatics
University of Oslo

Pipeline stalls (2)

« When a stage is not ready,
either

— the whole pipeline stalls
(previous slide)

— or the results need to be double
buffered to absorb the delay
» (much like an accordion)
 ready signal is buffered upstream

13.04.2023

prR; prRs pPrRs
readyR; R, - rRs <+ readyR,
rRs; rRs; rRs3
dR dR
Rethy si bl 52 || s3 | —SRe
valid VRa1 VR, VR=2 VR, VR VR; VR,
e
(a)
prev_ready;
int_readyR;
readyR; <_7y
(-«
prev_ready;,;
07
idR. 4
dRy, validRiy Muxt 1o oa dR, validR,
Mux}— 1 eg L
A
(b)
Time -
0 1 2 3 4 5 6 7
cAlF o F A
1 A B c D E £l E LT F
) oA|D oAlD A
Qo 1 —_— e
g 2 A B C T T L D E
oAlBoA|B A
3 A _T A I A : B C D
I X Xa A B C

UiO ¢ Department of Informatics
University of Oslo

Load balancing

T=4ns ©=250M T=16ns

 One or more of the stages e {J, % ‘ ‘

In a pipelining doesnt meet @
timing requirement:
=> we can sometimes
* pipeline that stage internally
- parallellize that stage

13.04.2023

UiO ¢ Department of Informatics
University of Oslo

10 cycles 5or 15 cycles

(a)
Cycle

Variable loads

0 5 10 | 15 20 25 30 35 40 45 50 55 60 65 70

 Using a FIFO between S I I CHE S Oy
. . A [rle]e;
stages with variable loads o
may ensure throughput - -
A B |
LA | & |
(A] [

13.04.2023 24

UiO ¢ Department of Informatics
University of Oslo

Resource sharing

* When sharing resources

— Use an arbiter to sort who can use the
resource
+ a): which stage in a pipeline
* b): which pipeline

» Within a pipeline (a)
— the arbiter (priority encoder) should

prioritize the stage furthest down stream
+ to avoid deadlock.

» Between separate data paths:
— avoid starvation
(one being stalled at all times)

— => use a toggle, round robin scheme, etc

* Implement arbitration using an FSM
13.04.2023

y

Y

i

Cosine |—

\

Y

Y

25

UiO ¢ Department of Informatics
University of Oslo

Summary

« Terms for timing:
— Always or periodically valid
— Flow control
* Push — Pull - Two way
« Simple pipelines:
— adding registers between operations that can be split

« Advanced pipelines (Multi module systems):
— Stalling

* Flow control
» Double buffering

— Load balancing

— Resource sharing
 arbitration

13.04.2023

26

UiO ¢ Department of Informatics
University of Oslo

Suggested reading

DHA:
. 22 p479-494
. 23 p497-518

13.04.2023

27

	Slide 2: IN3160, IN4160
	Slide 3: Beskjeder:
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Interface Timing
	Slide 6: Always Valid Timing
	Slide 7: Periodically Valid Timing
	Slide 8: Flow Control
	Slide 9: Flow-control types
	Slide 10: Serialization
	Slide 11: Serialization with word granularity flow control
	Slide 12: Packet size
	Slide 13: Isochronous timing
	Slide 14: Interface timing summary
	Slide 15: Pipelining content
	Slide 16: Pipelining terms
	Slide 17: Parallellized vs pipelined
	Slide 18: Pipelining of 32 bit ripple carry adder
	Slide 19: 32 bit ripple carry adder continued
	Slide 20: Pipelines
	Slide 21: Pipeline stalls (1)
	Slide 22: Pipeline stalls (2)
	Slide 23: Load balancing
	Slide 24: Variable loads
	Slide 25: Resource sharing
	Slide 26: Summary
	Slide 27: Suggested reading

