
IN 3160, IN4160

Verification part 2 File IO

Yngve Hafting

Messages

• Watch videos posted by Alexander Wold before session

monday (see timeplan). (=Flipped classroom)

• Roar will run ordinary lectures this year.

16.02.2023 3

https://www.uio.no/studier/emner/matnat/ifi/IN3160/v23/timeplan/index.html

Course Goals and Learning Outcome
https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

In this course you will learn about the design

of advanced digital systems. This includes

programmable logic circuits, a hardware

design language and system-on-chip design

(processor, memory and logic on a chip). Lab

assignments provide practical experience

in how real design can be made.

After completion of the course you will:

• understand important principles for

design and testing of digital systems

• understand the relationship between

behaviour and different construction criteria

• be able to describe advanced digital

systems at different levels of detail

• be able to perform simulation and

synthesis of digital systems.

Goals for this lesson:

• To write self-testing testbenches
• What is self-testing test benches

• File IO in VHDL

• VHDL attributes used in test benches

• Assertions

• To understand set-up and hold-time

• Be able to check for violations

• To generate test-bench clocks that

emulate real world clocks

Next lesson

• Finite state machines (FSM’s)

https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html

Outline

• Testbench

– General layout (repetition)

– Self checking testbenches concept

– What should a good TB do

– TB output

• Assertions

• File IO

• Example synthesizable File IO

• Example- self checking test bench

• Set-up / hold time for FFs

• Timing checks

– Relevant attributes for assertions

16.02.2023 5

Stimuli

DUT =

VHDL module
Predictor

Comparator

Results /log

General testbench layout (R)

• Stimuli
• Generate or read stimuli from a file

• Use procedures rather than repeating lines

• DUT
• Device under test (Device, Module, ...)

• Connect DUT input to stimuli to create

simulation results

• Predictor
• Predicts what the output should be

• Calculates from input or reads from file

• Comparator
• Compares simulation result with predicted

result and reports to screen or file.

INF3430/443

1

Side 15

Self checking test benches

Input stimuli

Wait

for outputs to

stabilize

Check outputs

against fasit

inputs?

Errors?

Update

error log

YES

NO

Final report

NO

Wait to assign

new stimuli

YES

UUT

Known good
behavioral

model of UUT
(KGBM)

Stimuli
(from file/script/…)

(FIFO)

Waveform
compare

File
(All relevant output)

Console
(Minimum output)

• -performs tests and reports to screen or file

(timing diagram is only used when debugging)

• Two perspectives

• As a system of modules

• As a finite state machine
• Does not reflect stimuli independent testing

A good testbench:
• Tests should

– run independently of stimuli

– run throughout simulation

– cover all (100%) specified behaviour
• Catch all deviations from known good behavior

• Stimuli

– Should cover all types of behavior
• All design (VHDL) code should be run (100% code coverage)

• All corner cases or

– Formal verification : All possible input
» = not possible in most cases

» (eg 32 bit adder = (232)2 combinations)

– Normally sets DUT-inputs only

• never overwrite signals inside DUT

– => create and test submodules separately if this seems needed...

• Fault injection

– Proves that the each test will catch errors

• Fault injection can use "Force" to overwrite signals from or in DUT
16.02.2023 16

Stimuli

DUT =

VHDL module

Predictor

Comparator

Results /log

Test bench output

• Report
– which test are performed

– what stimuli are applied

– successful completion of

• Stimuli series

• Tests

– Errors

• Expected vs simulation result

• Timing

• Create relevant waveforms

(we do not automate this)
– Before errors or deviations occur

– Relevant input, output

– Internal states (preferably with names)

16.02.2023 17

1.00ns INFO cctb.pwm Starting monitoring events

1.00ns INFO cctb.pwm Starting duty cycle tests

15.00ns INFO cctb.pwm Passed: Reset test

163850.00ns INFO cctb.pwm Duty cycles: Set dc: 50.0%, Measured dc: 49.0%, period = 163.8us, f = 6.11kHz

327690.00ns INFO cctb.pwm Duty cycles: Set dc: -50.0%, Measured dc: -49.0%, period = 163.8us, f = 6.10kHz

327690.00ns INFO cctb.pwm Sequential duty tests complete

491530.00ns INFO cctb.pwm Duty cycles: Set dc: 27.3%, Measured dc: 27.0%, period = 163.8us, f = 6.10kHz

819210.00ns INFO cctb.pwm Duty cycles: Set dc: 50.0%, Measured dc: 49.0%, period = 163.8us, f = 6.10kHz

983050.00ns INFO cctb.pwm Duty cycles: Set dc: -84.4%, Measured dc: -84.0%, period = 163.8us, f = 6.10kHz

1310730.00ns INFO cctb.pwm Duty cycles: Set dc: -33.6%, Measured dc: -33.0%, period = 163.8us, f = 6.10kHz

1474570.00ns INFO cctb.pwm Duty cycles: Set dc: 41.4%, Measured dc: 41.0%, period = 163.8us, f = 6.10kHz

1638410.00ns INFO cctb.pwm Duty cycles: Set dc: -23.4%, Measured dc: -23.0%, period = 163.8us, f = 6.10kHz

1966090.00ns INFO cctb.pwm Duty cycles: Set dc: -27.3%, Measured dc: -27.0%, period = 163.8us, f = 6.10kHz

2129930.00ns INFO cctb.pwm Duty cycles: Set dc: -27.3%, Measured dc: -27.0%, period = 163.8us, f = 6.10kHz

2176090.00ns INFO cctb.pwm Random duty tests 1/2 complete

2176090.00ns INFO cctb.pwm Resetting module...

2176105.00ns INFO cctb.pwm Reset between duties complete

2176105.00ns INFO cctb.pwm Passed: Reset test

2339940.00ns INFO cctb.pwm Duty cycles: Set dc: -29.7%, Measured dc: -29.0%, period = 163.8us, f = 6.10kHz

2667620.00ns INFO cctb.pwm Duty cycles: Set dc: -69.5%, Measured dc: -69.0%, period = 163.8us, f = 6.10kHz

2831460.00ns INFO cctb.pwm Duty cycles: Set dc: 27.3%, Measured dc: 27.0%, period = 163.8us, f = 6.10kHz

2943460.00ns INFO cctb.pwm Random duty tests 2/2 complete

2943460.00ns INFO cctb.regr main_test passed

**

** TEST STATUS SIM TIME (ns) REAL TIME (s) RATIO (ns/s) **

**

** tb_pwm.main_test PASS 2943460.00 11.54 255164.53 **

** TESTS=1 PASS=1 FAIL=0 SKIP=0 2943460.00 11.66 252500.41 **

**

Example (not perfect):

How to organize a medium sized testbench

• Create separate classes for

– Generic signal monitoring

• replaces use of 'attributes in VHDL

– can be much more extensive than attributes

– DUT Monitoring

• Contains all tests, their trigger and

reports

– Stimuli generation

• Creates all input sequentially

– Either timed or based on response

• Uses DUT-inputs

– Fault injection
• can be run with DUT being an empty entity.

• Forces/overrides signals used in tests

16.02.2023 18

• Separate location for classes will ensure better

readability

• Allow the simulator to run as much as

possible...

• Test only on appropriate triggers
• everything on every clock => slow test.

• Do not store values that can be easily

calculated

VHDL libraries for test benches/ file IO

• std.textio from IEEE contains procedures

for reading from and writing to file

• (see next page for package declaration)

• Standard VHDL package declarations can

be found by searching the web

(if you do know their name)

19

20

package TEXTIO is

type LINE is access string;

type TEXT is file of string;

type SIDE is (right, left);

subtype WIDTH is natural;

file input : TEXT open READ_MODE is "STD_INPUT";

file output : TEXT open WRITE_MODE is "STD_OUTPUT";

procedure READLINE(file F: TEXT; L: inout LINE);

procedure READ(L:inout LINE; VALUE: out bit; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit);

procedure READ(L:inout LINE; VALUE: out bit_vector; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit_vector);

procedure READ(L:inout LINE; VALUE: out BOOLEAN; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character);

procedure READ(L:inout LINE; VALUE: out integer; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out integer);

procedure READ(L:inout LINE; VALUE: out real; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out real);

procedure READ(L:inout LINE; VALUE: out string; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out string);

procedure READ(L:inout LINE; VALUE: out time; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out time);

procedure WRITELINE(file F : TEXT; L : inout LINE);

procedure WRITE(L :inout LINE; VALUE : in bit;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in bit_vector;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in BOOLEAN;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in character;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in integer;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in real;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

procedure WRITE(L : inout LINE; VALUE : in string;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in time;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

end TEXTIO;

L (line) is the access (pointer) to

the «current» position in a text

Note: L is inout since it is both

read and set by the procedure

File IO

• Synthesis

– Mostly used for reading ROM content

– Strictly not supported by VHDL-> vendor specific solutions

• Vivado synthesis (2020) can only use std_logic or bit, no integers

• Simulation

– Stimuli (input)

– Response (logging)

• Data output

• Errors and other messages

16.02.2023 21

File IO

• Binary files

– Can output whole types (custom types, records / anything)

– Only one type per file

– Tool specific (non portable code)

• Text files

– Can contain anything

– Human readable

– A bit trickier to use (text to type conversions…)

• We will use text files
16.02.2023 22

Example: File IO for synthesis of ROM 1/2

• 4 byte ROM example

– 8 bit data

– 2 bit address

• Libraries
– Remember std.textio

• File name

– Assuming project (work) directory

Yngve Hafting: 16.02.2023

23

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

use STD.textio.all;

entity ROM is

generic(

data_width: natural := 8;

addr_width: natural := 2;

filename: string := "ROM_data_bits.txt"

);

port(

address: in std_logic_vector(addr_width-1 downto 0);

data: out std_logic_vector(data_width-1 downto 0));

end entity;

• Tool specific: Vivado won’t allow for

integers being read from file or strings

– Integer data will have to be converted

to ‘1’ and ‘0’ (without ‘_’).

• Impure:

– Does not always return the same result using

same input parameters (due to file usage)

• File is a text we open in read mode

• Line is “access” type which means

– A pointer to a position in the file

• Readline

– Sets the line pointer to the beginning of the

(first or) next line

• Read

– Sets the data parameter

– Sets the line pointer to the next data

(or end of line)

• Whitespace is delimiter

• What do we get if we set ROM_DATA to a signal?

• By initializing as default value this memory can be

synthesized with file usageYngve Hafting: 16.02.2023 24

type memory_array is array(2**addr_width-1 downto 0) of

std_logic_vector(data_width-1 downto 0);

impure function initialize_ROM(file_name: string)

return memory_array is

file init_file: text open read_mode is file_name;

variable current_line: line;

variable result: memory_array;

begin

for i in result'range loop

readline(init_file, current_line);

read(current_line, result(i));

end loop;

return result;

end function;

--initialize rom:

constant ROM_DATA: memory_array := initialize_ROM(filename);

begin

data <= ROM_DATA(to_integer(unsigned(address)));

end;

Example: File IO for synthesis of ROM 1/2

Combinational implementation

Assertions - «To ensure a model is working with valid inputs»*

• Syntax

• Compilation

– Can be used to check for size mismatches at compile time.

• RTL Simulation

– Compare simulated and expected outcome values (behavior)

• Post Synthesis simulation

– Cheks on signal timing attributes in addition to behavior

• Severity levels

– failure means «simulation should be stopped»

• Usually when a module cant be initiated correctly, something doesn’t compile…

– error – when the model provides wrong output or goes into wrong state

– warning – «unexpected conditions that do not affect the state of the model»

– note – to report when everything went well (default for report)
16.02.2023

Yngve Hafting

25

assert <boolean condition> -- report when false

report <string>

severity <note, warning, error, failure>;

* Richardo Jasinski «Effective coding with VHDL»

Example Self-checking test bench 1/3

• Libraries

– std.textio ++

• Generics for RTL simulation only

– For post synthesis simulation:
• Synthesis will already have used any generic for

creating sizes, unless you are working with a

behavioral model of a component.

• Default values for stimuli generated by

testbench

– Do not set default values for component

outputs!
• May hide initialization errors

Yngve Hafting 16.02.2023

26

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.numeric_std.all;

use STD.textio.all;

entity tb_ROM is

end entity;

architecture behavioral of tb_ROM is

constant data_width: natural := 8;

constant addr_width: natural := 2;

component ROM is

generic(

data_width: natural := 8;

addr_width: natural := 2;

filename: string := "ROM_data_bits.txt");

port(

address: in std_logic_vector(addr_width-1 downto 0);

data: out std_logic_vector(data_width-1 downto 0));

end component;

signal tb_data : std_logic_vector(data_width-1 downto 0);

signal tb_address: std_logic_vector(addr_width-1 downto 0) := "00";

begin

DUT: ROM

port map(

address => tb_address,

data => tb_data);

• Why do we put our

procedures in process, not

architecture declaration?

16.02.2023 27

Example Self-checking test bench 2/3

STIMULI: process is

file stimuli_file: text open read_mode is "ROM_stimuli.txt";

variable stimuli_line: line;

variable stimuli_address: integer;

variable stimuli_data: integer;

procedure set_stimuli is

begin

readline(stimuli_file, stimuli_line);

read(stimuli_line, stimuli_address);

read(stimuli_line, stimuli_data);

tb_address <= std_logic_vector(to_unsigned(stimuli_address, addr_width));

end procedure;

file log_file: text open write_mode is "ROM_results_and_log.txt";

variable log_line: line;

procedure check_output is

constant ADR_DIGITS : integer := 2; -- size adress as base 10 number

constant DAT_DIGITS : integer := 4; -- size data as base 10 number

constant SPACER: integer := 1;

begin

--report errors to console

assert (tb_data = std_logic_vector(to_signed(stimuli_data, data_width)))

report ("DATA MISMATCH for address: ", integer'image(stimuli_address))
severity error;

-- report to file

write(log_line, stimuli_address, field => ADR_DIGITS);

write(log_line, stimuli_data, field => DAT_DIGITS + SPACER);

write(log_line, tb_data, field => tb_data'length + SPACER);

writeline(log_file, log_line);

end procedure;

begin

while not endfile(stimuli_file) loop

set_stimuli;

wait for 1 ns;

check_output;

end loop;

file_close(stimuli_file);

file_close(log_file);

report ("Testing finished!");

std.env.stop;

end process;

end architecture;

000 -126

001 23

002 10

003 3

Example Self-checking test bench 3/3

ROM_DATA_bits.txt

16.02.2023 28

ROM_stimuli.txt ROM_results_and_log.txt

00000011

00001100

00010111

10000010

• Synthesizable

– ‘1’ and ‘0’ stored as text

– Only partial VHDL

implementation
• No integers or other types

• No underscores

– Different tool = different issues

• Simulation only

– Any type stored as text

– Full VHDL implementation
• Whitespace >1 = OK

– Good practice:
• Use human readable values

• integers or hex values > binary

• Our output data

– We decide format

– Try to make output that
• is readable and

• understandable

• can be used to check data

0 -126 10000010

1 23 00010111

2 10 00001100

3 3 00000011

29

package TEXTIO is

type LINE is access string;

type TEXT is file of string;

type SIDE is (right, left);

subtype WIDTH is natural;

file input : TEXT open READ_MODE is "STD_INPUT";

file output : TEXT open WRITE_MODE is "STD_OUTPUT";

procedure READLINE(file F: TEXT; L: inout LINE);

procedure READ(L:inout LINE; VALUE: out bit; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit);

procedure READ(L:inout LINE; VALUE: out bit_vector; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out bit_vector);

procedure READ(L:inout LINE; VALUE: out BOOLEAN; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out character);

procedure READ(L:inout LINE; VALUE: out integer; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out integer);

procedure READ(L:inout LINE; VALUE: out real; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out real);

procedure READ(L:inout LINE; VALUE: out string; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out string);

procedure READ(L:inout LINE; VALUE: out time; GOOD : out BOOLEAN);

procedure READ(L:inout LINE; VALUE: out time);

procedure WRITELINE(file F : TEXT; L : inout LINE);

procedure WRITE(L :inout LINE; VALUE : in bit;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in bit_vector;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in BOOLEAN;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in character;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in integer;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in real;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

DIGITS: in NATURAL := 0);

procedure WRITE(L : inout LINE; VALUE : in string;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0);

procedure WRITE(L : inout LINE; VALUE : in time;

JUSTIFIED: in SIDE := right;

FIELD: in WIDTH := 0;

UNIT: in TIME := ns);

end TEXTIO;

We used std_logic_vector similar to bit_vector

Post synthesis, post implementation

simulation and testbenches

• Mostly relevant for ASIC design

• Post synthesis, post route

– Using the same testbench may be difficult

• Simulation information in design files will normally be stripped during synthesis.

– Assertions will be gone

• Adaptations may be necessary to compile

– Generics may be frozen/ not generic

– Timing information will be there

• Much more to test on…

– Signal attributes next slide

• Does not replace static timing analysis and constraints

– Timing constraints are used for synthesis…

16.02.2023 30

https://docs.xilinx.com/r/en-US/ug900-vivado-logic-simulation/Post-Synthesis-Simulation

Performing a thorough timing simulation ensures that the completed

design is free of defects that could otherwise be missed, such as:
• functionality changes that are caused by:

• Synthesis properties or constraints that create mismatches

• UNISIM properties applied in the Xilinx Design Constraints (XDC) file

• The interpretation of language during simulation by different simulators

• Dual port RAM collisions

• Missing, or improperly applied timing constraints

• Operation of asynchronous paths

• Functional issues due to optimization techniques

https://docs.xilinx.com/r/en-US/ug900-vivado-logic-simulation/Post-Synthesis-Simulation

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

31

Signal Attributes for simulation 1/2

• These are signal only!

– Each signal maintains these

throughout simulation

– Variables don’t have these

• => v. faster in simulation

• ‘event used in rising_edge()
– (other use not intended for synthesis)

• ‘last…

– Can be useful in testbenches

– Example (oblig 8):

assert en'last_event < LONG_PWM_CYCLE/2

report "PWM is not happening,.."

severity error;

INF3430 / INF4431

Simulation methodology – Simulation of VHDL models

32

Signal Attributes for simulation 2/2

• May be used to create

simulation logic and tests

– (not synthesizable)

import cocotb

from cocotb import start_soon

from cocotb.triggers import Edge, ReadOnly

from cocotb.utils import get_sim_time

Conversion to pico-seconds using dictionary

ps_conv = {'fs': 0.001, 'ps': 1, 'ns': 1000, 'us': 1e6, 'ms':1e9}

class SignalEventMonitor():

""" Tracks a signals last event. """

def __init__(self, signal):

self.signal = signal

self.last_event = get_sim_time('ps')

self.last_rise = self.last_event

self.last_fall = self.last_event

start_soon(self.update())

async def update(self):

while 1:

await Edge(self.signal)

Avoid multiple triggers on a single event

await ReadOnly()

self.last_event = get_sim_time('ps')

if self.signal == 1: self.last_rise = self.last_event

else: self.last_fall = self.last_event

def stable_interval(self, units='ps'):

convert last_event to the prefix in use

last_event_c = self.last_event/ps_conv[units]

calculate stable interval

stable = get_sim_time(units) - last_event_c

return stable

#... Monitoring a signal ...

en_mon = SignalEventMonitor(self.dut.en)

PERIOD_NS = 10

#...

assert en_mon.stable_interval('ns') > PERIOD_NS-1, (

"not stable long enough!")

Attributes in cocotb?

• Cocotb and GHDL does not (Jan. 2023) have

built in support for VHDL signal attributes.

– Other simulators may have an API for this...

• Solution: create a signal monitor class

– It will run slightly slower than a pure VHDL

simulation due to added context switching

• Alternative: build a new top layer in VHDL

with signal attributes as outputs along with

the other signals.

– Downside for this is spreading testbench code

into multiple modules and languages

16.02.2023

33

core "attributes"

Monitoring service

Secondary

attribute

calculation

on demand

More on VHDL attributes

• There are attributes for

– Signals

• (previous slides)

– Types

• Notable:

– ‘image(v) returns a string ex :

– ‘value(s) returns a value (opposite of ‘image)

– Array types/objects (vectors)

– ‘left, ‘right, ‘low, ‘high, ‘range, ‘reverse_range, ‘length,
‘ascending (= false when «downto»), ‘element (== subtype of the vector)

– Entities

• attributes to get compiled name hierarchy- as seen in simulator when selecting signals
16.02.2023 34

report("current value is: ", integer'image(my_int));

integer'value(my_str);

clk

input

clk

input

Testcase:

Set-up/hold time in flipflops

• To avoid metastability (neither 0 nor 1),

inputs must be stable some time before

(set-up) and after (hold) clock edge

• Output (not shown) will return to 0 or 1

after being in the metastable state, but

it’s not given which one.

– This means; the system is no longer

deterministic.

35

clk

input

Timing and logic check

• The stable attribute can be used to check set-up- and hold times

– Returns true if a signal has been stable >= time given as input parameter

• Assert in an entity =>
checking is being done for all architectures that belongs to this entity.

36

CAUTION! Care should be taken using asserts. Vivado can only support static asserts that do not

create, or are created by, behavior. For example, performing as assert on a value of a constant or a
operator/generic works; however, as asset on the value of a signal inside an if statement will not work.

Clock generator

• Asymmetric low and high time (dutycycle)

37

Example:

Clock with jitter

• Jitter:

– (random) variable delay

– Occurs naturally in all

digital electronic

• math_real.uniform:

– pseud-random number

generator procedure

– uniform distribution

– alters seed values and sets

rnd number 38

procedure UNIFORM(

variable SEED1, SEED2 : inout POSITIVE;

variable X : out REAL);

Suggested reading

• D&H

– File access, ROM

• 8.8 p184-189

– Attributes

• B.8 p 638-640

– Timing constraints:

• 15.1-3 p 328 - 334

• 15.4-6 p 334- 340

16.02.2023 39

	Slide 2: IN 3160, IN4160
	Slide 3: Messages
	Slide 4: Course Goals and Learning Outcome https://www.uio.no/studier/emner/matnat/ifi/IN3160/index-eng.html
	Slide 5: Outline
	Slide 6
	Slide 15: Self checking test benches
	Slide 16: A good testbench:
	Slide 17: Test bench output
	Slide 18: How to organize a medium sized testbench
	Slide 19: VHDL libraries for test benches/ file IO
	Slide 20
	Slide 21: File IO
	Slide 22: File IO
	Slide 23: Example: File IO for synthesis of ROM 1/2
	Slide 24
	Slide 25: Assertions - «To ensure a model is working with valid inputs»*
	Slide 26: Example Self-checking test bench 1/3
	Slide 27
	Slide 28: Example Self-checking test bench 3/3
	Slide 29
	Slide 30: Post synthesis, post implementation simulation and testbenches
	Slide 31: Signal Attributes for simulation 1/2
	Slide 32: Signal Attributes for simulation 2/2
	Slide 33: Attributes in cocotb?
	Slide 34: More on VHDL attributes
	Slide 35: Testcase: Set-up/hold time in flipflops
	Slide 36: Timing and logic check
	Slide 37: Clock generator
	Slide 38: Example: Clock with jitter
	Slide 39: Suggested reading

