
Oblig 4

Structural code using component instantiation
IN3160 / IN4160

Version 2.2 2023-02-02

In this exercise, we will look at instantiation of components. The attached code in dff.vhd is a bit-

register (flipflop) with synchronous reset. The register will receive the next value on each rising_edge

of the mclk , and this value will either be 0 when rst_n is active (low) or din when the reset signal

is inactive. For this exercise, the dff component shall be used without modifications.

The shift registers implemented in this assignment should have serial input and both parallel and

serial output (both “SIPO” and “SISO” functionality). The shift registers shall have single bit input,

there is no need to construct parallel input1.

Figure 1: 8 bit shift register with serial input and parallel output

Figure 2: Bi-directional shift register with parallel load capability

1 Shift registers are typically used for serial transceivers. Most known is “UART” - Universal Asynchronous
Receiver Transmitter. Fast board-to-board communication are normally never parallel, although you may have
several serial transmitters working in parallel, each transmitter works individually to perform fast transfer rates
and error correction.

b b b b b b b b

b b b b b b b b

serial in serial out

clk

lin

rin

 (n downto)

n i o s

a)

Create an 8-bit shift register by instantiating the component dff 8 times, and call this component

shift8. Use named association in port map. Create a test bench that simulates the shift register.

b)

Create a 32-bit shift register by means of the component dff and generate the statement. Name this

component shift32. Use named association in port map. Create a test bench that simulates the

shift register.

When using python testbenches with cocotb and GHDL, generics in the top level module can be given

new values using SIM_ARGS += -g<GENERIC> in the makefile.

Example that sets generic “width” to 5:

SIM_ARGS +=-gWIDTH=5

As long as += is used with SIM_ARGS, multiple generics can be set by duplicating the statement for

each generic parameter.

c)

Create an n-bit shift register by means of a generic statement. Name this component shiftn. Create

a test bench that simulates an instantiation of shiftn with the length set at 64 bit.

Approval:

VHDL source files and python test bench for the individual questions.

