
Oblig 5

VHDL Subprograms and packages -

Functions and Procedures,

Packages and Libraries
IN3160/4160

Version 4 - 16.2.2023

In this exercise, we will explore VHDL functions and learn to create VHDL packages. We will
also start to build a self-checking testbench with Cooctb.
Optionally, a2) will highlight some architecture features in FPGA design.

a) Simulate the attached code in pargen.vhd and tb_pargen.py (the given Makefile may be
used). Here two 16-bit vectors (indata1 and indata2) are read in and a parity signal (par) is
generated.
Create a PNG-image of the simulation result.
(gtkwave: File->Grab to file)

b) Modify the code in pargen.vhd to encapsulate the two different methods in separate
functions for creating parity calculation.

c) Move the functions in b) to a subprog_pck package. Modify pargen.vhd from part b of the
exercise to use the functions from the subprog_pck package.

d) Modify the given tb_pargen.py and complete change the function stimuli_generator() so

that it generates randomized stimuli for indata1 and indata2.

- Complete the function compare() to verify that the output par is correct. (Use assertions)

 Hint: output par updates only on rising_edge(mclk).

- You may use the provided functions parity(value) and parity_predict(dut) to calculate the

expected value of the output par.

Hint #1: Type conversions can be a bit tricky in VHDL. Going from integer to

std_logic_vector requires deciding on whether you will use signed data or not. Here is an

example on how to convert from integer to an arbitrary length std_logic_vector using
numeric_std and std_logic_1164 libraries:

Approval:

• Simulation result (png)

• VHDL source file for the individual questions.

• Modified tb_pargen.py

• Optional: Answers to optional questions (below).

my_var := std_logic_vector(to_unsigned(i, my_var’length));

a2) (optional addition after a))

Create a project using the pargen.vhd file before modifications) in Vivado.

(Remember to select VHDL 2008 for both sources).
Open the RTL-analysis->Elaborated Design, and look at the schematic

generated. Zoom in and compare the paths of the parity_toggle and the

XOR_Parity (RTL_REDUCTION_XOR).

• How many gates is required for each path?

(Not counting inverters, only (N)AND/ (N)OR/ X(N)OR).

• If we would implement this schematic in a full custom ASIC, which version would

be favorable? (consider how many gate delays they will induce)

Synthesize the design, and open the synthesized design schematic. Note that the

differences you will see compared to the RTL schematic are mostly due to the
FPGA architecture consisting of logical blocks having mostly look-up tables

(LUTs) and flip-flops.

Does it seem to make any difference whether our code indicates the use of multiplexers or

reduction XOR if we implement it on a Xilinx Zynq-series FPGA?

	a) Simulate the attached code in pargen.vhd and tb_pargen.py (the given Makefile may be used). Here two 16-bit vectors (indata1 and indata2) are read in and a parity signal (par) is generated. Create a PNG-image of the simulation result. (gtkwave: F...
	c) Move the functions in b) to a subprog_pck package. Modify pargen.vhd from part b of the exercise to use the functions from the subprog_pck package.
	Approval:

