

Oblig 6

VHDL Programming using modules -

Control of seven segments
IN3160/4160

Version 3/2023-02

Procedure for VHDL coding
The creation of a hardware description in VHDL can be divided into four main elements:

• Try to form a correct idea of what type of solution is required.

– Read the exercise text carefully.

– Study the documentation for the test board.

– Create a block diagram for the inputs and outputs to be created for each module.

Structuring of a solution

The construction you will be implementing in the FPGA has an external interface to the other

components on the test board and an internal structure. The external interface, in the form of input

and output signals, corresponds to the entity declaration in a VHDL description. The internal

structure corresponds to the architecture part of the VHDL description. It is often appropriate to

divide the internal structure into a data path structure and a control structure.

The data path structure contains elements such as registers, adders, multiplexers that are

connected to data buses. This structure is well suited for description by a block diagram. If the

structure is complex, it is a good idea to divide it into smaller blocks.

The control logic’s input and output signals can be described by a block diagram together with the

data path structure. The internal structure is described best in the form of truth-value tables,

boolean equations and state diagrams. Comments in the code can be used to help structuring your

solution while working with it.

Another rule of thumb is to keep code at the same level within each module.

Code the structured solution in VHDL

With a well-documented structure as the starting point, it is normally an easy job to create

functioning code.

Naming guidelines for VHDL design files
To identify VHDL source files, it is a good idea to have certain naming conventions and rules for

what the various files should contain. In all of the designs you create starting with part 2 of the

exercise, we will save the entity and architecture in different files and follow the naming rules given

in the following table:

Table 1. Naming guidelines for VHDL source files

File content File name

Entity and architecture <design_unit_name>.vhd

Standalone entity <design_unit_name>_ent.vhd

Standalone architecture1 <design_unit_name>_arch.vhd

Package <packagename>_pkg.vhd

Behavioral architecture (simulation model) <design_unit_name>_beh.vhd

Test bench (not VHDL when using python) tb_<design_unit_name>.py

<design_unit> should be names that identify the function/content of the file (for example:

seg7ctrl_ent.vhd, seg7ctrl_arch.vhd, tb_seg7ctrl.py).

In many cases, it may be beneficial to keep both entity and architecture in a single file to avoid

having too many files, but it is also possible to separate each compilation unit to avoid spending

time on compiling code that has not been changed.

It is common to have a small number of design packages, often just one, that is synthesizable (for

example: mydesign_pck.vhd and mydesign_bdy.vhd).

Test benches

The key question when designing a test bench is what test vectors must be generated for a complete

simulation of the chip’s behavior. Depending on the complexity of the chip, this may be a very easy

or a very difficult task. In many cases, it is a good idea to start with a table with all the relevant

input signal combinations and expected output signal values.

Self-test vs test bench
Normally we talk of running test benches as a method for verification, while a self-test is one way of

testing2. While a test bench verifies functionality by creating a simulation environment providing

input and checking output values before implementation, a self-test does physically test a system,

after implementation on physical hardware. In many complex systems in use today, it is usual to

have self-tests implemented. Examples of self-test modules can be built in self-tests for RAM in

PCs, simple test such as all the dashboard lights being lit when turning on a vehicle, or other

diagnostic tests that can be accessed through menus when needed. Advanced self-tests are often

hidden from the end-user, but available to service personnel when it is needed to perform

necessary diagnostics.

1 In designs having multiple architectures for one entity, architecture names should be
<entityname_architecturename>_arch.vhd

2 The word “testing” normally implies it is performed on physical hardware, while “verification” normally

describes what is done to verify functionality before implementation.

Test bench for VHDL simulation

Seven segment displays used in this exercise

Figure 1. Seven-segment display connection diagram3

Table 1 Truth table for a seven-segment display

Di(3:0) abcdefg Character

i=1,0

0000 1111110 0

0001 0110000 1

0010 1101101 2

0011 1111001 3

0100 0110011 4

0101 1011011 5

0110 1011111 6

0111 1110000 7

1000 1111111 8

1001 1111011 9

1010 1110111 A

1011 0011111 B

1100 1001110 C

1101 0111101 D

1110 1001111 E

1111 1000111 F

3 Source: Pmod seven-segment display reference manual: pmodssd_rm.pdf

Report and deliverables
A brief report that sums up what has been done and includes problems/challenges. It may be a

good idea to draw figures with block diagrams, for example.

For this exercise, you must hand in:

• All VHDL source file(s)

• Python test bench for b) and c)

• Makefile the testbenches (comment out changes/replacements)

• Waveforms (.ghw)

• Utilization report and Timing summary report for d)

• The .bit file used for programming the board.

All the submitted VHDL files shall follow the naming guidelines for VHDL files and use

indentation consistently to ensure good readability.

a) bin2ssd

entity bin2ssd_test is
 port
 (
 di : in std_logic_vector(3 downto 0);
 abcdefg : out std_logic_vector(6 downto 0);
);
end entity bin2ssd_test;

Create a VHDL function bin2ssd that implements the translation from binary number to seven

segment code according to Table 1. Use the function in an architecture with the entity given above

and test your function using the provided testbench tb_bin2ssd.py.

Optional: put the bin2ssd function in a separate package seg7_pkg that can be used later in this

and coming assignments.

b) seg7ctrl
In this exercise, you will implement control of the seven segments, so that all of them seem active

simultaneously. It is possible to achieve this by creating a construction in which both displays are

activated in sequence, using a high enough frequency. The human eye will normally be unable to

detect flicker from light being strobed at frequencies of 40-100Hz or above, depending on the duty

cycle (duty cycle = on/off ratio). This can be achieved by using a counter to keep track of time.

The output c indicates which of the two displays are active, and the value of abcdefg must be

according to d0/d1 and the combinational function, depending on which of the displays are

supposed to be active.

This module should have the following entity:

entity seg7ctrl is
 port
 (
 mclk : in std_logic; --100MHz, positive flank
 reset : in std_logic; --Asynchronous reset, active high
 d0 : in std_logic_vector(3 downto 0);
 d1 : in std_logic_vector(3 downto 0);
 abcdefg : out std_logic_vector(6 downto 0);
 c : out std_logic
);
end entity seg7ctrl;

This module shall be synthesized, but not tested on the test board in this part of the exercise.

Create a testbench that uses a python dictionary such as in the provided testbench to verify that

abcdefg are the are the decoded value of d0 when C=0 and d1 when C=1.

(You may choose to build upon the testbench provided or make your own.)

Simulate the test bench with the RTL code.

For arithmetic operations, such as +, -, * and /, use the numeric.std package (use

ieee.numeric_std.all).

How many bits must the counter have, and which bit is used to display clear characters on each of

the seven segments? (If you are clearing your counter using a predefined value, how many bits do

you need for this value.)

Guidance:

Create a block diagram that shows the data paths from d0 and d1 to the seven-segment displays.

How should the counter be used? The counter and the decoder from oblig 1 and 2 may be useful

here.

Note! Each display must be active for a number of clock cycles in order for characters to be

displayed correctly. If c pulses are too short, characters from the other segment may flow together.

Tips: While entity ports normally should be std_logic, it may improve readability to declare

signals (such as counter registers) as unsigned, to avoid excessive use of type conversions.

c) self-test unit
To be able to test the seven-segment module when it is synthetized and implemented on the FPGA

(i.e. not in a testbench/simulation), you shall build a self-test module that displays a pre-defined

pattern of characters and numbers on the seven-segment display.

The self-test unit shall feed a modified the seg7ctrl module a sequence of characters.

- Create an alternative architecture for seg7ctrl, named seg7ctrl_arch.vhd. In this file, copy the

architecture from b) and replace the values for the seven segment output with the values given in

Table 2 below. This alternative encoding paired with the values for D1 and D0 from Table 3 below,

that you will feed into your seg7ctrl, will display a “secret” message on the seven segment display

when done correctly!

Di abcdefg Di abcdefg
0000 0000000 1000 0111011
0001 0011110 1001 0111110
0010 0111100 1010 1110111
0011 1001111 1011 0000101
0100 0001110 1100 1111011
0101 0111101 1101 0011100
0110 0011101 1110 0001101
0111 0010101 1111 1111111

Table 2 new seven-segment code table

During compilation, make sure the new architecture is compiled after seg7ctrl.vhd, in order to

replace the architecture.

self test system

d0

d1

4

4

seg7ctrl

abcdefg_n

7

c

self test unit

d1

d0

Second
tick

generator

ROM

control
logic

Figure 2: The self-test unit.

- Create a VHDL file for the self test unit. The self test unit shall contain a counter that will create a

signal “second_tick” that is active (‘1’) exactly one clock cycle every second.

For each time the “second_tick” signal ‘ticks’, the self test unit shall change the value of D1 and D0

into seg7ctrl in accordance with Table 3 below in order to display the “secret” message.

Store the values that shall be sent into D1 and D0 (Table 3) in a ROM (file IO is optional4), and

access each value sequentially (two at a time, one value for each signal) every time a second passes,

in order to display the message. The message shall start over once finished.

- Create a testbench that gives stimuli to the self test unit (only a reset and a clock). It is sufficient

to check that d0 and d1 is what you expect and changing with every second_tick, but feel free to

make it self-checking5.

D1 (hex) D0 (hex)
1 2
3 4
4 0
0 0
5 6
7 3
0 0
8 6
9 0
0 0
A B
3 0
0 0
C 6
6 5
0 0

Table 3 «Secret» message ROM table

4 Using File IO and some creativity, it is easy to create arbitrary long messages in a ROM. Using both the

displays you can create and decode almost any letter.

5 When simulating it is ok to make second_tick faster by adjusting the counter limit. Do remember to change

this back when moving to implementation!

d) Implementation

Implement the design on the zedboard, and check that it runs6 and does what it is supposed to do.

- To do this you shall wrap your self test unit and seg7ctrl modules in a new module named self test

system. This module does not have any inputs (only a reset and clock), as all the data is handled

made by the self test unit itself, but it does have two outputs. One std_logic for C and one

std_logic_vector[6:0] for abcdefg. See Figure 2 above.

- Create a testbench for the self test system. This can be very similar to the one you made in task c)

for self test unit. Verify that the outputs c and abcdefg is as you expect

- Create a project in Vivado with all your needed synthesizable design files and go through the

Vivado workflow to assign pins to the ports of your module (See Table 3 below) and generate a

bitstream. Be sure that there are no critical warnings and upload the bitstream.

(Keep in mind that this time around we will NOT map our clock to a button, but to a crystal

oscillator located on the Zedboard.)

The zedboard has a crystal oscillator that generates a 100MHz clock signal which is connected to

the Zynq-7000 Package Pin Y9 (Se chapter 2.5 in the Zedboard user guide). Pin numbering on the

chip can be found in the Pmod Connections in the Zedboard documentation. The reset signal shall

be connected to the BTNR in the zedboard. Use the Zedboard User Guide to find the package pin

correct pin.

All input and output for the project is 3.3V.

Table 3. Seven segment board hardware pins

PmodSSD ZedBoard
Xilinx Zynq chip
See Zedboard user guide

Segment A JC1_P AB7

Segment B JC1_N AB6

Segment C JC2_P Y4

Segment D JC2_N AA4

Segment E JD1_P V7

Segment F JD1_N W7

Segment G JD2_P V5

C (CAT) JD2_N V4

Good luck!

6 When working at home, the Zedboards in the lab can be accessed and viewed as described in the wiki:

https://robin.wiki.ifi.uio.no/Remote_access

https://robin.wiki.ifi.uio.no/Remote_access

e) Optional (not needed for approval):

Create a system that counts the each time the button BTNL is pressed and displays the count as

a base10 number on the display. The system should be reset when pushing the BTNR button.

Hint: Use separate counters for each digit, rather than translating 8bit binary to two decimal

numbers.

How well does the number readout correspond to the times you push the button?

Why is it like this?

How can we achieve a better readout if we only want to count the actual number of times we

physically press the button?

