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Introduction  
Read the entire introduction and the module specifications before starting to code! 
The goal of this lab exercise is to give you experience creating state machines and 

synchronization modules using HDL, and integrating modules in a larger design. For each 

part of the exercise, you must follow the same design flow as in previous exercises.  

The ability to control/regulate the position of a robot arm is a basic function for every robot. 

In this exercise, we will be creating an “IP” (Intellectual Property) module that will comprise 

the speed regulator for a motor. We will be using this in a number of contexts, in this exercise 

and in oblig 10, where we will use it together with a microprocessor. 

As part of this process, you will learn: 

• to create a large system 

• to synchronize external and internal signals 

• to use predefined simulation models in a test bench 

Regulation systems in brief 
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Figure 1. Regulation loop 

Generally, a regulation system consist of an actuator we want to control, and a sensor that 

measures the actuator output. The measured output is compared to our setpoint, which is the 

desired output for the system. The comparison result in an error signal (deviation between 

the setpoint and the measured value) that is fed back to the regulator. The regulator uses the 

error to calculate a regulated value. The regulated value is then translated by the final 

controlling element into a signal that will actuate the actuator.  
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Figure 2. Regulation loop for this exercise 

In this exercise, we have a system where we would like to control the velocity of a motor. In 

the end, the system will consists of a PID regulator written in software that will run on the 

Zynq ARM core, which will pass a regulated value that will be used by the controlling element 

written in HDL. The controlling element will provide a pulse-width-modulated signal that 

can be sent to an H-bridge (PModHB3) that will drive the motor. The motor shaft is 

connected to an optical quadrature sensor (YUMO E6A2-CW3C) that sends its output back to 

the FPGA through the Pmod HB3 module. The quadrature output shall be translated into a 

velocity value using HDL. The velocity value shall be displayed on seven segments used in 

earlier exercises, and shall be used together with our setpoint to generate the error signal that 

can be fed into the PID regulator.   

Figure 2 illustrates the regulation loop, and its manner of operation is as follows: 

1. We impress a desired value, setpoint  that is a desired value for the velocity. 

2. setpoint is compared to a measured velocity, which gives the difference or deviation:  

error = setpoint - velocity. 

3. error is used as input for the regulator, which processes this with some mathematical formula 

(which is favorable for what we want to regulate) and yields a result that is called the 

manipulated or regulated variable. The regulated variable is used to control the final controlling 

element. 

4. The final controlling element is often a power transmission unit, which is controlled from the 

regulator, and exerts power sufficient to create movement. In our case, this consists of a module 

generating a PWM signal that are connected to the motor through an H-bridge. In other systems, 

there may be hydraulic components, pneumatic components, etc. 

 

A block diagram of the modules that will be used or created in the system is given in Figure 1, below. 
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Figure 1: Long-term goal: To implement a control loop with a soft PID controller combined with hardware for 

generating PWM and capturing sensor data.  

Creating this system as a whole is a tall order before finishing the first course in digital 

design, so we will circle in on specific parts, making the process manageable. One thing to 

note before doing that, is that when first starting a project, you will normally only have an 

idea of the major modules that will play a part in your design. In this design, there are several 

modules, some that were not identified initially. Thus, the initial block diagram may need to 

be refined several times during a design depending on the complexity.  

For this design, we have aimed for having two levels of HDL code- one structural level, and 

one containing modules written at the register transfer level. If the complexity were to grow 

much more, we might want to add another structural level to make the top level easier to 

comprehend. Doing so would need to be thought through carefully, to avoid creating a messy 

structure where RTL code exists at multiple levels. Having same type of code at each level is 

important to keep the system read- and maintainable.  

Another thing to note about this design is that we have broken the design into modules that 

you may, or may not want to merge or split. We could add modules to provide reuse of signals 

and thus reducing the overall design size. Questions that have come up are for example:  

- Do we need separate modules for input and output synchronization?  

- Would it be wise to create a “heartbeat” module to reduce the number of counters in 

the system? 

You may have other questions, both now and after finishing the design, but for now, the 

structure is laid down before you, and we shall use it as it is.  

Process for this exercise 
In this exercise, you will go through the process of designing and testing the FPGA part of the 

overall system, with a few modifications to allow for some testing before we get into the 

system integration, which will be covered in a later exercise. The system for this task is shown 

in Figure 2, below.  
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Figure 2: In this exercise, you will create a system consisting of several modules that can be used to test the 

functionality, before you will connect them to the ARM core in the next exercise.  

 

a) The first task for this exercise is to create a self-test module that will provide an 8 bit 

signed duty cycle signal to the pulse width modulator (PWM module). The self test 

module shall provide at least 20 different values which shall be displayed for 3 

seconds each. The values should be stored in a ROM after being read from a separate 

text file during synthesis. (This will make it easier to change values when testing the 

system). In this pattern, full speed in each direction shall be tested, and the motor 

direction should visibly turn at least twice. The last value sent to the motor shall be 

zero, to stop the PWM output. The test shall not repeat after finishing the sequence.  

Optional: Create a way to have the self-test include either a linear or sinusoidal 

sweep of PWM values, lasting 10 seconds before the 20 values that are required.  

 

b) The next task for this exercise will be to create and simulate the PWM-module 

(pulse_width_modulator.vhd) that will be used to control the motor speed. The test 

bench for this simulation is pre-made (tb_pwm.py).  

 

c) After the pwm-module is tested and verified, you can create the in- and output 

synchronizing modules, and test the pwm-module and the output synchronizer 

together with the self-test module. You will need to decide for yourself which 

modifications will be needed to achieve this. 

 

d) Create and simulate the quadrature decoder. In this case, you will be creating the 

testbench. (see note on type names in cocotb) 

 

e) The quadrature decoder shall be connected to the input synchronization module and 

the pre-made velocity reader. The velocity reader shall be connected to the seg7ctrl 

module. You will have to decide for yourself if you should modify the seg7ctrl module 

for this task. Note that the velocity reader output is an 8 bit signed. An absolute value 

of this may be the best option to display on the seven-segments.  

 

Hint: It is OK to only use Di(3 downto 0) for each display.   



When all these modules are put together, as shown in Figure 2, the system shall run a the 

self-test, which will show how the motor responds to the duty-cycle numbers coded in the test 

pattern. While the motor is running, it should be possible (in a comprehensible manner) to 

read how fast it spins on the seven-segment display. 

Report 
Please hand in: 

• VHDL source file(s) 

• Python test bench for c), d) 

• ROM content file for the self-test module.  

• Makefiles 

• .xdc constraints files  

• Utilization report and Timing summary report 

• Bit programming file for the final task.  

• A brief report that sums up what has been done, and thoughts on problems/challenges.  

 

All the submitted VHDL files should follow the naming rules for VHDL files and indenting 

guidelines as described in the cookbook. 

Optional: The system can be run and shown to the lab supervisors for approval.  

 

 

Note 1: cocotb does not have access to custom types, like state types.  

“dut.state.value” will return a binary value, just as any other signal in the dut. To make 

sense of what state the dut is in, use a translation in the testbench. The binary values have a 

pattern determined by how you define the type. The first state has a value of 0, the second 1, 

the third 2, and so on. A python dictionary will be the best data structure for this translation. 

Eg.: 

state_conv_table = { 0: ‘state1’, 

1: ‘state2’, ...} 

 

Specifications on the PWM-, synchronization and Quadrature modules 

follows:



pulse_width_modulator 

In this task, you will create a module “pulse_width_modulator” that can control the motor 

speed by using a pulse with modulated signal. The motor is connected to an H-bridge board 

(PmodHB3).  

   

Figure 3: PmodHB3   Figure 4: Pulse width modulation example 

The H-bridge is controlled by two signals, DIR for direction and EN to enable output. 

Switching DIR will switch the polarity of the output, thus driving the motor in the opposite 

direction. DIR Must never be changed while enable is high, since this will cause a 

short in the board. Thus to avoid destroying the motor driver circuit we must provide a 

module that does not allow this to happen.  

 

Figure 5: H bridge connection diagram    Table 1: PmodHB3 pin description 

  

The EN signal shall be pulse with modulated. The pulse frequency will affect how well the 

pwm signal is able to drive the motor with no load. The data sheet refers to 2 kHz, which 

should be “safe”, but well within the audible spectrum. Selecting frequencies in the upper 

part of the audible spectrum (5-25 kHz) may yield unpleasant sound, going higher seems to 

heat up the PMod board while the motor impedance increases, thus you should keep the 

overall frequency of the output below 5 kHz.   

 

The H-bridge is connected to the top row of the pmod port JB1 on the Zedboard. (When used 

remote, this can be hard to spot).  

Pin  Signal  Description  

1  DIR  Direction pin  

2  EN  Enable pin  

3  SA  Sensor A feedback pin  

4  SB  Sensor B feedback pin  

5  GND  Power Supply Ground  

6  VCC  Positive Power Supply (3.3/5V)  



 

  

 

 

 

Implement the PWM module using the entity and state machine diagram in Figure 7 and 
Figure 8. The duty_cycle signal will be sent as a two-complement coded 8 bit 
std_logic_vector.  Obs: Følg guiden, ikke installer med apt. Versjonen som ligger i ubuntu 
repository er v1.0.0. V2/v3 må bygges. 
 

Hint: Type convert to signed, when using duty_cycle in calculations. 

Hint: Pulse width modulation can be achieved by comparing an n-bit counter to the 

duty_cycle absolute value. To get a frequency lower than 5kHz use the most significant bits 

on an n-bit counter. The absolute value can be found using the abs function. The keyword 

alias can be used to give an alias to a signal or a part of a vector. 

 

 

 

  

function "abs" ( X : SIGNED) return SIGNED; 

     -- Result subtype: SIGNED(X'LENGTH-1 downto 0). 

     -- Result: Returns the absolute value of a SIGNED vector X. 

 

alias <new_name> : <type><(range)> is <signal_name><(range)>; 
example  
signal frukt : std_logic_vector(12 downto 2); 
alias pærer : std_logic_vector(3 downto 0) is frukt(frukt'low + 3 downto frukt'low)  
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Figure 8: PWM module entity 
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Figure 7: PWM module state machine 
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Figure 6: en is required to be low 
before and after dir changes 

 



Use the test bench tb_pwm_module.vhd to test that the operation of the module is safe. Do 

not use your module for implementation before the testbench can be run without errors or 

failures.  

When the test is passed, you can implement the module (you will do that later anyway). 

 

Since we are working with mechanical parts that wear out over time, please make sure the 

motor is off or turn off the board when you have confirmed operation.  

  



Synchronization modules 

When we construct modules that both read asynchronous data, and set data that will be read 

outside our clock domain, we have to be aware of two basic hazards: 

1: Input from external sources may change at random, thus creating metastability and 

unpredictable behavior in our registers.  

2: Our output, even those coming from stable sources as a Moore machine, may be the source 

to glitches, due to combinational output based on our registers.  
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Figure 9: Moore type design in an unsynchronized environment.  

To avoid metastability when reading input sources, we need specialized synchronizers, such 

as FIFOs or brute force synchronizers, depending on the input type.  

To avoid glitches from the combinational output we may have two options- either create 

glitch free combinatorial output, our simply put flipflops on all our outputs. The latter will be 

preferable if it can be permitted in the design, as it is easy to design and verify. In some cases, 

however, we may have to construct specialized combinatorial logic, to ensure proper behavior 

without resorting to output buffers.  
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Figure 10: A fully synchronized Mealy type design.  

Note that once we fully synchronize both inputs and outputs, Mealy type FSMs will generally be preferable, 

unless pipelining is required to meet timing requirements. When looking at the whole system, it can be seen as a 

Moore machine, but it is often beneficial to make the distinction between a system with a Mealy machine and 

output synchronization, compared to a Moore machine alone. Both Mealy and Moore machines may need 

output synchronization to ensure that the outputs are glitch free.   

  



output_synchronizer 

When it comes to synchronizing the seven-segment LED output, the human eye will likely not 

detect to short glitches as long as the output frequency is low compared to the overall clock 

frequency. Thus, we do not require output synchronization on the seven-segment output.  

When it comes to the motor output, it is essential to avoid output glitches that may cause 

short-circuits in the driving circuit.  

Create a module containing flipflops for DIR and EN to avoid creating output glitches on 

these signals.  

input_synchronizer 

In our design, the input of our buttons, switches and the quadrature encoder are 

asynchronous, and by default, they all should be synchronized. However, the way we use the 

input from buttons and switches in this particular design1 we do not need to synchronize 

these. The input from the quadrature encoder should be synchronized, and thus this will be 

the task for this exercise.  

Since the quadrature encoder output is gray code, we can use brute force synchronizers on 

the input (combined with faulty state recognition in the quadrature-decoder module). 
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Figure 11: 1 bit brute force synchronizer.  
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Figure 12: General synchronizer 

Create a brute force synchronization module for the SA and SB signals from the quadrature 

encoder.  

 

1 In this design, we only check whether a button is pressed or not, rather than if it is pressed and 

released; -and it does not matter if it happens multiple times in a row. If we were to implement 

functionality to check for multiple use, we would both need to synchronize the input and check for 

signal stability since electrical signals from physical buttons and switches tend to bounce several times 

when actuated.  



Quadrature_decoder 

In this task, you will use the signals from the quadrature encoder to create pulses that show 

when the motor position has been either incremented or decremented one position.  

 

The increment and decrement pulses shall be 1 clock 

cycle long. We shall have an increment or decrement 

pulse each time Phase A or B changes from the 

quadrature encoder.   

Note that SA and SB are not synchronized with our 

clock signal, thus the output from the 

synchronization module from the previous task must 

be used as input to the quadrature decoder. Clock 

and reset signals shall be present, although omitted 

in the entity drawing.  

The (internal) signal “err” is for declaring an 

erroneous state change.  Normally this will never happen, as the encoder should be able to 

read all available speeds of the geared down motor shaft.  

 

Table 2: State table for the quadrature decoder 

AB S_reset S_init S_O S_1 S_2 S_3 current 
state 

00 S_init S_0 - S_0 - S_0 dec S_reset err S_0 inc next_ 
state/ 
output 

01 S_1 - S_1 inc S_1 - S_1 dec S_reset err 

11 S_2 - S_reset err S_2 inc S_2 - S_2 dec 

10 S_3 - S_3 dec S_reset err S_3 inc S_3 - 

 

 

 

 

 

quadrature_decoder
SA

SB

pos_inc

pos_dec

  

Figure 14: Quadrature decoder 

 

 

Figure 13: Quadrature encoder operation 
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Figure 15: ASM diagram for Quadrature decoder2.  

Implement an FSM for the quadrature decoder as described above, in Figure 15 and Table 2.  

Tip: Sometimes, a state table will be both faster to make and easier to read than an 

ASM diagram. Multiple paths between states is a sign that this might be the case. (An ASM 

diagram will infer priority, whether that is necessary or not). In this case, creating a bubble 

diagram for S0, S1, S2 and S3 (set out in a circle), omitting S_reset and S_init, might help 

visualizing the valid quadrature transitions. Including the S_reset and S_init will likely 

make the diagram harder to read, and it is strictly not needed, since the visualization is 

only a supplement to the state table. 

Tip: Using case, rather than nested if-statements may result in code that is easier to read 

and maintain.   

  

 
2 The state machine shall not set SA and SB, the parenthesis in the state boxes show the combination of SA and SB that lead to the state. 

Using parenthesis like this is strictly not ASM (which does not state any use of parenthesis in this manner), but it may save you some time 

determining which arrow goes where.  



About the quadrature encoder and the motor speed. 

In our system, the position sensor consists of an optical shaft encoder (Yumo E6A2-CW3C). 

Shaft encoders have a shaft and a permanently mounted part. The shaft is connected to the 

shaft of the motor, and the electrical output is connected to the feedback pins in the PMOD 

H-bridge. A and B can thus be read from SA and SB pin according to Figure 5. Two pulses are 

received from the encoder, a and b, which have a 90 degree phase displacement. Which 

signal comes first depends on the rotational direction of the shaft. In our set-up we have the 

following relationship between the direction and phase displacement between the signals a 

and b. 

 stop / turningforward reverse

a

b

 

Figure 16: Position measurement. Arrow shows detected of transitions and direction 

The encoder we use gives 200 pulses per round for each phase, which in total should enable 

us to read 800 positions for each round. That is we have 4 transitions of either a or b for each 

pulse period.  

By implementing the state machine described in the quadrature decoder task, the FPGA will 

generate one pulse for each change in position, as shown in Figure 16. 

Note that the the maximum rotation speed of the encoder is 5000 RPM which in turn may 

give 4 000 000 transitions (or 1 000 000 pulses for each phase) per minute. This 

corresponds to a switching frequency of 16,7kHz and a transition frequency of 66,7kHz, 

which both are well below our master clock frequency of 100MHz.  

When connecting the motor directly to a 5V source, while unloaded, we can get around 300 

RPM on the geared down shaft.  

The velocity module does provide velocity in terms of rounds per 10s (coded as an 8 bit 

signed vector), given that the quadrature decoder provides increment and decrement signals 

according to the task specification. The format of rounds per 10s was chosen to enable all 

usable values to fall within the range of an 8 bit unsigned (between -128 and 127).  

 


