
Oblig 8

Modules in a system, state machine design

and synchronization.
IN3160/IN4160

Version 3/2023-01

Introduction
Read the entire introduction and the module specifications before starting to code!
The goal of this lab exercise is to give you experience creating state machines and

synchronization modules using HDL, and integrating modules in a larger design. For each

part of the exercise, you must follow the same design flow as in previous exercises.

The ability to control/regulate the position of a robot arm is a basic function for every robot.

In this exercise, we will be creating an “IP” (Intellectual Property) module that will comprise

the speed regulator for a motor. We will be using this in a number of contexts, in this exercise

and in oblig 10, where we will use it together with a microprocessor.

As part of this process, you will learn:

• to create a large system

• to synchronize external and internal signals

• to use predefined simulation models in a test bench

Regulation systems in brief

Regulator
Final

controlling
element

Ac-
tuator

ErrorSetpoint
Regulated

value

Measured value
Measurment

Sen-
sor

+

-

Figure 1. Regulation loop

Generally, a regulation system consist of an actuator we want to control, and a sensor that

measures the actuator output. The measured output is compared to our setpoint, which is the

desired output for the system. The comparison result in an error signal (deviation between

the setpoint and the measured value) that is fed back to the regulator. The regulator uses the

error to calculate a regulated value. The regulated value is then translated by the final

controlling element into a signal that will actuate the actuator.

Regulator
Controlling

element
DC-

motor

ErrorSetpoint
Regulated

value

Velocity Velocity
measurement

Sen-
sor

PWM signal

Quadrature signal

Motor driver /
amplifier

voltage

-

+

Figure 2. Regulation loop for this exercise

In this exercise, we have a system where we would like to control the velocity of a motor. In

the end, the system will consists of a PID regulator written in software that will run on the

Zynq ARM core, which will pass a regulated value that will be used by the controlling element

written in HDL. The controlling element will provide a pulse-width-modulated signal that

can be sent to an H-bridge (PModHB3) that will drive the motor. The motor shaft is

connected to an optical quadrature sensor (YUMO E6A2-CW3C) that sends its output back to

the FPGA through the Pmod HB3 module. The quadrature output shall be translated into a

velocity value using HDL. The velocity value shall be displayed on seven segments used in

earlier exercises, and shall be used together with our setpoint to generate the error signal that

can be fed into the PID regulator.

Figure 2 illustrates the regulation loop, and its manner of operation is as follows:

1. We impress a desired value, setpoint that is a desired value for the velocity.

2. setpoint is compared to a measured velocity, which gives the difference or deviation:

error = setpoint - velocity.

3. error is used as input for the regulator, which processes this with some mathematical formula

(which is favorable for what we want to regulate) and yields a result that is called the

manipulated or regulated variable. The regulated variable is used to control the final controlling

element.

4. The final controlling element is often a power transmission unit, which is controlled from the

regulator, and exerts power sufficient to create movement. In our case, this consists of a module

generating a PWM signal that are connected to the motor through an H-bridge. In other systems,

there may be hydraulic components, pneumatic components, etc.

A block diagram of the modules that will be used or created in the system is given in Figure 1, below.

SoC

FPGA system

quadrature_decoder

SA

SB

pos_inc

pos_dec

velocity_reader

velocity
(7 downto 0)

position
(7 downto 0)

pos_inc

pos_dec

seg7ctrl

ARM Microcontroller

PC/ User interface

PID control

Seven
segments

motor

Quadrature
encoder

pulse_width_
modulator

en

dir

duty_cycle
(7 downto 0)

output
synchronizer

DIR DIR_synch

EN_synchEN

input
synchronizer

SA SA_synch

SB_synchSB

Figure 1: Long-term goal: To implement a control loop with a soft PID controller combined with hardware for

generating PWM and capturing sensor data.

Creating this system as a whole is a tall order before finishing the first course in digital

design, so we will circle in on specific parts, making the process manageable. One thing to

note before doing that, is that when first starting a project, you will normally only have an

idea of the major modules that will play a part in your design. In this design, there are several

modules, some that were not identified initially. Thus, the initial block diagram may need to

be refined several times during a design depending on the complexity.

For this design, we have aimed for having two levels of HDL code- one structural level, and

one containing modules written at the register transfer level. If the complexity were to grow

much more, we might want to add another structural level to make the top level easier to

comprehend. Doing so would need to be thought through carefully, to avoid creating a messy

structure where RTL code exists at multiple levels. Having same type of code at each level is

important to keep the system read- and maintainable.

Another thing to note about this design is that we have broken the design into modules that

you may, or may not want to merge or split. We could add modules to provide reuse of signals

and thus reducing the overall design size. Questions that have come up are for example:

- Do we need separate modules for input and output synchronization?

- Would it be wise to create a “heartbeat” module to reduce the number of counters in

the system?

You may have other questions, both now and after finishing the design, but for now, the

structure is laid down before you, and we shall use it as it is.

Process for this exercise
In this exercise, you will go through the process of designing and testing the FPGA part of the

overall system, with a few modifications to allow for some testing before we get into the

system integration, which will be covered in a later exercise. The system for this task is shown

in Figure 2, below.

system

input
synchronizer

SA SA_synch

SB_synchSB

output
synchronizer

DIR DIR_synch

EN_synchEN

quadrature_decoder

SA

SB

pos_inc

pos_dec

velocity_reader

velocity
(7 downto 0)

pos_inc

pos_dec

seg7ctrl

self-test
module

pulse_width_
modulator

en

dir

duty_cycle
(7 downto 0)

Figure 2: In this exercise, you will create a system consisting of several modules that can be used to test the

functionality, before you will connect them to the ARM core in the next exercise.

a) The first task for this exercise is to create a self-test module that will provide an 8 bit

signed duty cycle signal to the pulse width modulator (PWM module). The self test

module shall provide at least 20 different values which shall be displayed for 3

seconds each. The values should be stored in a ROM after being read from a separate

text file during synthesis. (This will make it easier to change values when testing the

system). In this pattern, full speed in each direction shall be tested, and the motor

direction should visibly turn at least twice. The last value sent to the motor shall be

zero, to stop the PWM output. The test shall not repeat after finishing the sequence.

Optional: Create a way to have the self-test include either a linear or sinusoidal

sweep of PWM values, lasting 10 seconds before the 20 values that are required.

b) The next task for this exercise will be to create and simulate the PWM-module

(pulse_width_modulator.vhd) that will be used to control the motor speed. The test

bench for this simulation is pre-made (tb_pwm.py).

c) After the pwm-module is tested and verified, you can create the in- and output

synchronizing modules, and test the pwm-module and the output synchronizer

together with the self-test module. You will need to decide for yourself which

modifications will be needed to achieve this.

d) Create and simulate the quadrature decoder. In this case, you will be creating the

testbench. (see note on type names in cocotb)

e) The quadrature decoder shall be connected to the input synchronization module and

the pre-made velocity reader. The velocity reader shall be connected to the seg7ctrl

module. You will have to decide for yourself if you should modify the seg7ctrl module

for this task. Note that the velocity reader output is an 8 bit signed. An absolute value

of this may be the best option to display on the seven-segments.

Hint: It is OK to only use Di(3 downto 0) for each display.

When all these modules are put together, as shown in Figure 2, the system shall run a the

self-test, which will show how the motor responds to the duty-cycle numbers coded in the test

pattern. While the motor is running, it should be possible (in a comprehensible manner) to

read how fast it spins on the seven-segment display.

Report
Please hand in:

• VHDL source file(s)

• Python test bench for c), d)

• ROM content file for the self-test module.

• Makefiles

• .xdc constraints files

• Utilization report and Timing summary report

• Bit programming file for the final task.

• A brief report that sums up what has been done, and thoughts on problems/challenges.

All the submitted VHDL files should follow the naming rules for VHDL files and indenting

guidelines as described in the cookbook.

Optional: The system can be run and shown to the lab supervisors for approval.

Note 1: cocotb does not have access to custom types, like state types.

“dut.state.value” will return a binary value, just as any other signal in the dut. To make

sense of what state the dut is in, use a translation in the testbench. The binary values have a

pattern determined by how you define the type. The first state has a value of 0, the second 1,

the third 2, and so on. A python dictionary will be the best data structure for this translation.

Eg.:

state_conv_table = { 0: ‘state1’,

1: ‘state2’, ...}

Specifications on the PWM-, synchronization and Quadrature modules

follows:

pulse_width_modulator

In this task, you will create a module “pulse_width_modulator” that can control the motor

speed by using a pulse with modulated signal. The motor is connected to an H-bridge board

(PmodHB3).

Figure 3: PmodHB3 Figure 4: Pulse width modulation example

The H-bridge is controlled by two signals, DIR for direction and EN to enable output.

Switching DIR will switch the polarity of the output, thus driving the motor in the opposite

direction. DIR Must never be changed while enable is high, since this will cause a

short in the board. Thus to avoid destroying the motor driver circuit we must provide a

module that does not allow this to happen.

Figure 5: H bridge connection diagram Table 1: PmodHB3 pin description

The EN signal shall be pulse with modulated. The pulse frequency will affect how well the

pwm signal is able to drive the motor with no load. The data sheet refers to 2 kHz, which

should be “safe”, but well within the audible spectrum. Selecting frequencies in the upper

part of the audible spectrum (5-25 kHz) may yield unpleasant sound, going higher seems to

heat up the PMod board while the motor impedance increases, thus you should keep the

overall frequency of the output below 5 kHz.

The H-bridge is connected to the top row of the pmod port JB1 on the Zedboard. (When used

remote, this can be hard to spot).

Pin Signal Description

1 DIR Direction pin

2 EN Enable pin

3 SA Sensor A feedback pin

4 SB Sensor B feedback pin

5 GND Power Supply Ground

6 VCC Positive Power Supply (3.3/5V)

Implement the PWM module using the entity and state machine diagram in Figure 7 and
Figure 8. The duty_cycle signal will be sent as a two-complement coded 8 bit
std_logic_vector. Obs: Følg guiden, ikke installer med apt. Versjonen som ligger i ubuntu
repository er v1.0.0. V2/v3 må bygges.

Hint: Type convert to signed, when using duty_cycle in calculations.

Hint: Pulse width modulation can be achieved by comparing an n-bit counter to the

duty_cycle absolute value. To get a frequency lower than 5kHz use the most significant bits

on an n-bit counter. The absolute value can be found using the abs function. The keyword

alias can be used to give an alias to a signal or a part of a vector.

function "abs" (X : SIGNED) return SIGNED;

 -- Result subtype: SIGNED(X'LENGTH-1 downto 0).

 -- Result: Returns the absolute value of a SIGNED vector X.

alias <new_name> : <type><(range)> is <signal_name><(range)>;
example
signal frukt : std_logic_vector(12 downto 2);
alias pærer : std_logic_vector(3 downto 0) is frukt(frukt'low + 3 downto frukt'low)

PWM_module

reset

clk

en

dir

duty_cycle
(7 downto 0)

Figure 8: PWM module entity

reverse

EN = PWM
DIR = 0

forward

EN = PWM
DIR = 1

forward_idle

EN = 0
DIR = 1

reverse_idle

EN = 0
DIR = 0

duty_cycle > 0 duty_cycle < 0

duty_cycle < 0duty_cycle > 0

F

reset

T

F F

T

T

F

T

Figure 7: PWM module state machine

clk

en

dir

Figure 6: en is required to be low
before and after dir changes

Use the test bench tb_pwm_module.vhd to test that the operation of the module is safe. Do

not use your module for implementation before the testbench can be run without errors or

failures.

When the test is passed, you can implement the module (you will do that later anyway).

Since we are working with mechanical parts that wear out over time, please make sure the

motor is off or turn off the board when you have confirmed operation.

Synchronization modules

When we construct modules that both read asynchronous data, and set data that will be read

outside our clock domain, we have to be aware of two basic hazards:

1: Input from external sources may change at random, thus creating metastability and

unpredictable behavior in our registers.

2: Our output, even those coming from stable sources as a Moore machine, may be the source

to glitches, due to combinational output based on our registers.

unsynchronized Moore module

D

CLK

Q

D

CLK

Q

Source Combinational
logic

Destination
Combinational

logic

Figure 9: Moore type design in an unsynchronized environment.

To avoid metastability when reading input sources, we need specialized synchronizers, such

as FIFOs or brute force synchronizers, depending on the input type.

To avoid glitches from the combinational output we may have two options- either create

glitch free combinatorial output, our simply put flipflops on all our outputs. The latter will be

preferable if it can be permitted in the design, as it is easy to design and verify. In some cases,

however, we may have to construct specialized combinatorial logic, to ensure proper behavior

without resorting to output buffers.

fully synchronized Mealy module

D

CLK

Q

Source
comb.
logic Destination

comb.
logicinput syn-

chronizer

output
syn-

chronizer

CLK CLK

Figure 10: A fully synchronized Mealy type design.

Note that once we fully synchronize both inputs and outputs, Mealy type FSMs will generally be preferable,

unless pipelining is required to meet timing requirements. When looking at the whole system, it can be seen as a

Moore machine, but it is often beneficial to make the distinction between a system with a Mealy machine and

output synchronization, compared to a Moore machine alone. Both Mealy and Moore machines may need

output synchronization to ensure that the outputs are glitch free.

output_synchronizer

When it comes to synchronizing the seven-segment LED output, the human eye will likely not

detect to short glitches as long as the output frequency is low compared to the overall clock

frequency. Thus, we do not require output synchronization on the seven-segment output.

When it comes to the motor output, it is essential to avoid output glitches that may cause

short-circuits in the driving circuit.

Create a module containing flipflops for DIR and EN to avoid creating output glitches on

these signals.

input_synchronizer

In our design, the input of our buttons, switches and the quadrature encoder are

asynchronous, and by default, they all should be synchronized. However, the way we use the

input from buttons and switches in this particular design1 we do not need to synchronize

these. The input from the quadrature encoder should be synchronized, and thus this will be

the task for this exercise.

Since the quadrature encoder output is gray code, we can use brute force synchronizers on

the input (combined with faulty state recognition in the quadrature-decoder module).

clk

clk

D Q

clk

D Q
n n_synch

Figure 11: 1 bit brute force synchronizer.

Input
synchronizer

a

.

.

.

b

n

a_synch

.

.

.

b_synch

n_synch

Figure 12: General synchronizer

Create a brute force synchronization module for the SA and SB signals from the quadrature

encoder.

1 In this design, we only check whether a button is pressed or not, rather than if it is pressed and

released; -and it does not matter if it happens multiple times in a row. If we were to implement

functionality to check for multiple use, we would both need to synchronize the input and check for

signal stability since electrical signals from physical buttons and switches tend to bounce several times

when actuated.

Quadrature_decoder

In this task, you will use the signals from the quadrature encoder to create pulses that show

when the motor position has been either incremented or decremented one position.

The increment and decrement pulses shall be 1 clock

cycle long. We shall have an increment or decrement

pulse each time Phase A or B changes from the

quadrature encoder.

Note that SA and SB are not synchronized with our

clock signal, thus the output from the

synchronization module from the previous task must

be used as input to the quadrature decoder. Clock

and reset signals shall be present, although omitted

in the entity drawing.

The (internal) signal “err” is for declaring an

erroneous state change. Normally this will never happen, as the encoder should be able to

read all available speeds of the geared down motor shaft.

Table 2: State table for the quadrature decoder

AB S_reset S_init S_O S_1 S_2 S_3 current
state

00 S_init S_0 - S_0 - S_0 dec S_reset err S_0 inc next_
state/
output

01 S_1 - S_1 inc S_1 - S_1 dec S_reset err

11 S_2 - S_reset err S_2 inc S_2 - S_2 dec

10 S_3 - S_3 dec S_reset err S_3 inc S_3 -

quadrature_decoder
SA

SB

pos_inc

pos_dec

Figure 14: Quadrature decoder

Figure 13: Quadrature encoder operation

(SA, ~SB)

S_3

(SA, SB)

S_2

(~SA, ~SB)

S_0

(~SA, SB)

S_1

POS_INCPOS_DEC

SA

SB

S_reset

S_init

reset

SB

T F

T F FT

SA

SB SB

SA

SB SB

SA

SB SB

SA

SB SB

F

T T

T FFFF TTT

F

POS_DEC

F

POS_INC

T
F

POS_DEC POS_INCPOS_INC POS_DEC

T

F
F

T
FF TT

err

T

errerrerr

Figure 15: ASM diagram for Quadrature decoder2.

Implement an FSM for the quadrature decoder as described above, in Figure 15 and Table 2.

Tip: Sometimes, a state table will be both faster to make and easier to read than an

ASM diagram. Multiple paths between states is a sign that this might be the case. (An ASM

diagram will infer priority, whether that is necessary or not). In this case, creating a bubble

diagram for S0, S1, S2 and S3 (set out in a circle), omitting S_reset and S_init, might help

visualizing the valid quadrature transitions. Including the S_reset and S_init will likely

make the diagram harder to read, and it is strictly not needed, since the visualization is

only a supplement to the state table.

Tip: Using case, rather than nested if-statements may result in code that is easier to read

and maintain.

2 The state machine shall not set SA and SB, the parenthesis in the state boxes show the combination of SA and SB that lead to the state.

Using parenthesis like this is strictly not ASM (which does not state any use of parenthesis in this manner), but it may save you some time

determining which arrow goes where.

About the quadrature encoder and the motor speed.

In our system, the position sensor consists of an optical shaft encoder (Yumo E6A2-CW3C).

Shaft encoders have a shaft and a permanently mounted part. The shaft is connected to the

shaft of the motor, and the electrical output is connected to the feedback pins in the PMOD

H-bridge. A and B can thus be read from SA and SB pin according to Figure 5. Two pulses are

received from the encoder, a and b, which have a 90 degree phase displacement. Which

signal comes first depends on the rotational direction of the shaft. In our set-up we have the

following relationship between the direction and phase displacement between the signals a

and b.

 stop / turningforward reverse

a

b

Figure 16: Position measurement. Arrow shows detected of transitions and direction

The encoder we use gives 200 pulses per round for each phase, which in total should enable

us to read 800 positions for each round. That is we have 4 transitions of either a or b for each

pulse period.

By implementing the state machine described in the quadrature decoder task, the FPGA will

generate one pulse for each change in position, as shown in Figure 16.

Note that the the maximum rotation speed of the encoder is 5000 RPM which in turn may

give 4 000 000 transitions (or 1 000 000 pulses for each phase) per minute. This

corresponds to a switching frequency of 16,7kHz and a transition frequency of 66,7kHz,

which both are well below our master clock frequency of 100MHz.

When connecting the motor directly to a 5V source, while unloaded, we can get around 300

RPM on the geared down shaft.

The velocity module does provide velocity in terms of rounds per 10s (coded as an 8 bit

signed vector), given that the quadrature decoder provides increment and decrement signals

according to the task specification. The format of rounds per 10s was chosen to enable all

usable values to fall within the range of an 8 bit unsigned (between -128 and 127).

