
IN3160

Design principles and rules for FPGA and ASIC.

Application Specific Integrated Circuit

IN3160 Design principles and rules for FPGA and ASIC 2

ASICs

Structured
ASICs

Gate Arrays
Standard

Cell
Full Custom

Increasing complexity

See: https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

When should an FPGA/CPLD be used?

• First choice for digital design with the following exceptions:

– Extreme performance requirements (high clock frequency or low power)

– Will be produced in massive quantities

– Very complex design (very large FPGAs are expensive)

– Analog electronics needed on the same chip

– Designs where low power is critical (mobile applications)

• ASIC design is prototyped on an FPGA and conversion to ASIC

is outsourced if the company lacks dedicated ASIC designers

• ASIC vs FPGA projects (2003):

– 1500-4000 new ASIC projects each year

– 450 000 new FPGA projects each year

IN3160 Design principles and rules for FPGA and ASIC 3

Main advantages of FPGA

development over ASIC

• Shorter development time due to easier re-programming.

Results in faster time-to-market

• SRAM and flash based can be re-programmed both

during development and in-system after delivery to the

customer

• Lower economical risk with a much lower initial

investment (zero NonRecurring Engineering (NRE) cost)

IN3160 Design principles and rules for FPGA and ASIC 4

FPGA-to-ASIC

• One or more FPGAs are used for prototyping an ASIC

design

• A challenge that ASIC does not have the same blocks as

the FPGA:

– A library can be made of functions (multipliers, memory

blocks, etc.) that exists in an FPGA to allow use of this

in ASIC, though this limits the ASIC synthesis

• The RTL code should be the same for both FPGA and

ASIC

• Example: Intel (www.easic.com) offers implementation of

FPGA based solutions in ASICs for higher performance,

lower production price and lower power consumption.

IN3160 Design principles and rules for FPGA and ASIC 5

http://www.easic.com/

ASIC-to-FPGA

• Original ASIC is out of production.

• Expand functionality of an ASIC without a new large

investment; i.e. FPGA development is much cheaper

than ASIC development.

• The size of modern FPGAs have made it possible to

implement ASICs made a few years ago in a single

FPGA chip.

• Requires updating the ASIC design to adapt to FPGA

specific functionality and features; i.e. “archeology” ☺

IN3160 Design principles and rules for FPGA and ASIC 6

Coding styles

• Pipelining

• Number of logic levels

• Asynchronous logic

• Use of clocks

• Lathes and registers

IN3160 Design principles and rules for FPGA and ASIC 7

Pipelining

IN3160 8

Wash 1

Wash 2

Wash 3

Time
17:00 19:00 21:00 01:0023:00

Wash 3

Design principles and rules for FPGA and ASIC

Wash 2

Wash 1

Time

8

Pipelining in digital systems

IN3160 Design principles and rules for FPGA and ASIC 9

Data In

Combinational

Logic

Combinational

Logic

Combinational

Logic

etc.

Clock

Data In

Registers Registers RegistersCombinational

Logic

Combinational

Logic

etc.

t1 t2
t3

t1
t2

Pipelining with VHDL example

IN3160 Design principles and rules for FPGA and ASIC 10

In the module compute shown below, the sum of the numbers a, b, c and

d shall be calculated as 16 bits. The output result with16 bits is set to max

value equal to x"FFFF" (i.e. all bits set to '1') when the sum is greater than

x"FFFF" and the signal max shall be set to '1' at the same time.

entity compute is

 port

 (rst : in std_logic;

 clk : in std_logic;

 a : in std_logic_vector(15 downto 0);

 b : in std_logic_vector(15 downto 0);

 c : in std_logic_vector(15 downto 0);

 d : in std_logic_vector(15 downto 0);

 result : out std_logic_vector(15 downto 0);

 max : out std_logic);

end entity compute;

Pipelining with VHDL example cont.

IN3160 Design principles and rules for FPGA and ASIC 11

architecture rtl of compute is

begin

 process (rst, clk) is

 variable result_i : unsigned(17 downto 0);

 begin

 if rst = '1' then

 result <= (others => '0');

 max <= '0';

 elsif rising_edge(clk) then

 result_i := unsigned("00" & a) + unsigned("00" & b) +

 unsigned("00" & c) + unsigned("00" & d);

 if result_i > "001111111111111111" then

 result <= (others => '1');

 max <= '1';

 else

 result <= std_logic_vector(result_i(15 downto 0));

 max <= '0';

 end if;

 end if;

 end process;

Pipelining with VHDL example problem

IN3160 Design principles and rules for FPGA and ASIC 12

It turns out that there are timing errors during implementation in the

selected technology and with the selected clock frequency.

The architecture rtl has to be changed to a new architecture

pipelined_rtl that have maximum 1 add operation (i.e. + operator)

and 1 comparison operation (i.e. the statement

result_i > "001111111111111111") in one clock period to achieve the

timing requirement (i.e. clock frequency).

Multiple add and comparison operations can still be performed in

parallel in each clock period (i.e. many adder and comparator

modules available in the FPGA hardware)

Pipelining with VHDL; solution with pipelining

IN3160 Design principles and rules for FPGA and ASIC 13

architecture pipelined_rtl of compute is

 signal ab_tmp : unsigned(16 downto 0);

 signal cd_tmp : unsigned(16 downto 0);

begin

 process (rst, clk) is

 variable result_i : unsigned(17 downto 0);

 begin

 if rst = '1' then

 ab_tmp <= (others => '0');

 cd_tmp <= (others => '0');

 result <= (others => '0');

 max <= '0';

 elsif rising_edge(clk) then

 ab_tmp <= unsigned('0' & a) + unsigned('0' & b); -- NOTE: signal assignment

 cd_tmp <= unsigned('0' & c) + unsigned('0' & d); -- NOTE: signal assignment

 result_i := ('0' & ab_tmp) + ('0' & cd_tmp); -- NOTE: variable assignment

 if result_i>"001111111111111111" then

 result <= (others => '1');

 max <= '1';

 else

 result <= std_logic_vector(result_i(15 downto 0));

 max <= '0';

 end if;

 end if;

 end process;

end architecture pipelined_rtl;

Number of logic levels

• The number of logic levels are more critical in FPGAs where

the delay between ports often are higher than in ASICs.

• FPGA designs may use more pipelining than ASIC designs to

achieve the required clock frequency since each logic cell in a

FPGA contains both a LUT and a register, but it will increase

power consumption.

IN3160 Design principles and rules for FPGA and ASIC 14

&

|

AND

OR

|

NOR
From previous

bank of registers

To next bank

of registers

Three levels of logic

Asynchronous logic

IN3160 Design principles and rules for FPGA and ASIC 15

Asynchronous design principles

• FPGAs can usually not have asynchronous designs

(in contrast to ASICs), because the behavior would

change each time place and route is performed.

• FPGAs shall usually always use registers in feedback

loops.

• Delay chains of combinatorial elements are hard to

make predictable in FPGAs

• Asynchronous logic design in FPGA is used in special

cases as in a True Random Number Generator

(TRNG) module (ref. P.S.Sundaram, 2010).

IN3160 Design principles and rules for FPGA and ASIC 16

Asynchronous TRNG basic principle

with XOR’d output

IN3160 Design principles and rules for FPGA and ASIC 17

Asynchronous TRNG multiple ring design

IN3160 18Design principles and rules for FPGA and ASIC

Clocks

• Limited number of clock distribution networks in

FPGAs limit the number of clock domains

• General FPGA inputs can often not be used for clock

signals. Check vendor specifications!

• FPGA designers do not need to fine tune clock

paths. The place and route tool for FPGA

automatically does this (hurrah ☺)

• Clock enabling, and not clock gating, should be used

in FPGAs
– Clock gating can be done, but only using special clock gating cells

(for example with the “BUFGCE” clock buffer from Xilinx)

– Due to limited number of clock gating cells (e.g. BUFGCE) should

clock gating be used for clocks to one or more modules.

IN3160 Design principles and rules for FPGA and ASIC 19

Clock enabling vs clock gating

IN3160 Design principles and rules for FPGA and ASIC 20

&
clock

gate

data reg-out

reg-out

Register

AND

RegisterMUX

clock

enable
data

(a) Clock gating principle

(c) Clock enabling (“then”)

reg-out

Register

clock

enable

data

(d) Clock enabling (“now”)

”&”
clock

clock enable (ce)

data

Register

BUFGCE

(b) Safe clock gating with

Xilinx BUFGCE clock buffer

Implementation on FPGA

• Clock generating modules (DCM / MMCM / PLL) and

clock distribution network already implemented

• Register and latches

– Do not use latches in FPGA (is mostly true for ASIC as well)

• Very good example at:

• https://www.doulos.com/knowhow/vhdl/synthesizing-latches

– Some FPGA chips support both asynchronous and synchronous set and

reset of registers, while ASIC and some FPGA chips only support

asynchronous set and reset.

IN3160 Design principles and rules for FPGA and ASIC 21

Implementation on FPGA cont.

22

• Resource sharing

– The choice of FPGA device should be done with the goal of using

most of the included functionality, given the ”using it or loosing it”

principle

– It is often more power efficient to use independent functional units

than using resource sharing based on multiplexers, as long as

enough functional units such as multipliers are available

• Finite State Machines (FSM) state encoding

– ”One-hot” encoding may instead of binary encoding be a space- and

timing-efficient technique due to the high number of registers in an

FPGA, though it is not as often used since multiple states can be

present at the same time (not a ”safe” FSM; see blog:

https://www.adiuvoengineering.com/post/microzed-chronicles-

implementing-safe-state-machines-with-vivado

• FPGAs comes production tested from the vendor (e.g. Xilinx, Intel,

Microchip, Lattice)

• ASICs must be designed for production test (DFT), which requires logic

resources and design time.

https://www.adiuvoengineering.com/post/microzed-chronicles-implementing-safe-state-machines-with-vivado
https://www.adiuvoengineering.com/post/microzed-chronicles-implementing-safe-state-machines-with-vivado

General C (C++) with High Level Synthesis (HLS)
HLS is lectured in IN5200 and used in lab ☺

IN3160 Design principles and rules for FPGA and ASIC 23

- Non-implementation-specific

- Easy to create

- Fast to simulate

- Easy to modify

Pure C/C++
Pure C/C++

Synthesis

User interaction

and guidence

Gate-level

netlist

Verilog /

VHDL RTL

LUT/CLB-

level netlist

ASIC

target

Verilog /

VHDL RTL

RTL

Synthesis

RTL

Synthesis

FPGA

target

Auto-generated,

implementation-specific

• Matlab can also generate VHDL/Verilog synthesisable code and

C-code for functional verification (i.e. DPI-C for SystemVerilog).

FPGA and ASIC development process

• Most companies have a separate development

process for FPGA and ASIC.

• Includes design rules, requirements, milestones,

documentation requirements, and responsibilities for

project members.

• Design reviews and LINT tools are used to reduce

risk of errors and miscommunication

IN3160 Design principles and rules for FPGA and ASIC 24

Code rules I

• Only a single statement is allowed per line

• Use (if possible) only active high signals (i.e. value ‘1’). External

signals that are active low shall be inverted in the first entered module.

Exceptions are active low reset signal and signals to IPs.

• Avoid internal tristate busses.

• Allowed types:

– std_logic

– std_logic_vector - only used for busses that are not numbers

– unsigned - used for all unsigned numbers

– signed - used for all signed numbers

– integer – shall be avoided if possible

– enumerated types - can be used for state machine variables. If used in several modules, they shall

be defined in a common project package.

– boolean – used for boolean operations (std_logic is preferred)

– composite types – collection of above types. Records can be used for grouping signals (e.g.

cpubus = data + control).

• Only explicit port mapping is allowed.

IN3160 Design principles and rules for FPGA and ASIC 25

Code rules II

• Vectors shall be defined as MSB down to LSB, e.g.

std_logic_vector(7 downto 0). LSB shall always be bit 0 if there are no

other special reasons.

• An original signal type shall be used throughout the hierarchy if the target

port is of the same type. Signals from/to the core (or higher top level)

module should be of the type std_logic and std_logic_vector.

• Port ordering in entity shall be: resets, clocks, common signals, signals

grouped by functionality or module. May group signals by each interface

alphabetically, inputs first, outputs and then I/O.

• Allowed packages:

– ieee.std_logic_1164.all

– ieee.numeric_std.all

– ieee.std_logic_textio

– std_textio

– std_developerskit

– project and company packages

– UVM and UVVM testbench packages

IN3160 Design principles and rules for FPGA and ASIC 26

Code rules III

• Concurrent statements should only be used for assigning the outgoing port to its

internal signal (e.g. res <= res_i) and for creation of tristate busses on top level.

• Do not use too many, or too few processes.

• Finite state machines can be described either in two processes (one sequential

and one combinatorial) or just as a single process (more about this in IN5200).

• It is recommended to use functions rising_edge and falling_edge instead of

event when describing clock edges.

• Variables can be used both for internal process calculations and for register

inferring. If the variable is only used for intermediate calculation, always assign

the variable before it is used to avoid latches.

• A multi level if-else statement shall only be used when a priority encoder is

intended. Otherwise case statement shall be used. Always use default value if

latch is not intended. Default values can also be set first in the process, above

if/case statement. In a case statement, use others (do not use null).

• Signals in the reset part of the process as well as default assignments shall be

listed grouped by functionality or in alphabetical order.

IN3160 Design principles and rules for FPGA and ASIC 27

Code rules IV

• Use parenthesis to group expressions in IF-statements to improve readability.

• Avoid purely combinational modules as they are not recommended for

synthesis. If possible, all output signals of a module shall come from

registers.

• Asynchronous signals or signals crossing clock domain boundaries shall be

synchronized to avoid meta-stability. Asynchronous input signals shall be

synchronized in the first entered module.

• Use tabs automatically substituted with spaces when writing code.

Indentation shall be 2 or 3 spaces.

• Longer concept description comments for the module shall be part of the

header or placed early in the file. Shorter line comments shall be used for

each process or functional part of the code.

• A comment declaration of each port and signal (each on a separate line) shall

be used. Comments shall be placed above or to the right of the code. Align

comments if possible.

IN3160 Design principles and rules for FPGA and ASIC 28

Naming rules I

• Upper case shall only be used for: constants, enumerated type

literals, generics and process labels. Lower case shall be used for

remaining names including file names. All names shall be as short as

possible, but always meaningful.

• Module names

– Use short module names.

– Do not use underscore in module names (except when prefix used).

– Preferably 2 to 5 characters

• Instance names:

– Always use instance labels ending with _? (e.g. module mod_reg instantiated

with label mod_reg_0, mod_reg_1).

• Design units (e.g. entity, architecture) may be in separate files.

IN3160 Design principles and rules for FPGA and ASIC 29

Naming rules II

• Predefined architecture types:

– str structural

– rtl register transfer level

– beh behavioural (i.e. not synthesizable)

– dmy dummy (empty). All outputs set to inactive values.

• Avoid mixing architecture types (e.g. rtl and str).

• File and design unit naming examples:

– Entity: uart_ent.vhd

– Architecture: uart_rtl.vhd, uart_str.vhd, uart_dmy.vhd

– Configuration: uart_cfg.vhd

– Package def.: nova_pck.vhd

– Package body: nova_bdy.vhd

– Testbench: tb_uart.vhd or t_uart_vhd

– Testbench config: tb_uart_cfg.vhd or t_uart_cfg.vhd

IN3160 Design principles and rules for FPGA and ASIC 30

Naming rules III

• Predefined suffixes for signals

– _n negative polarity; active low

– _i internal signal of outgoing port

– _d1, _d2 delayed signal (i.e. number of cycles).

– _s1, _s2 synchronized signal (i.e. number of cycles).

– _str strobe signal (i.e. one clock cycle long)

• Predifined names

– Clock and reset signals shall be preserved throughout the hierarchy.

– Clocks: default clock signal shall be mclk. If other clocks exist, the name shall be

clk_? and include frequency (m=MHz and k=kHz), e.g. clk_34k, clk_10m, clk_10m24

– Resets: rst, rst_n

– Interrupts: signal names shall be “irq_” (e.g. irq_fifo_empty).

– Process labels shall start with prefix P_ (e.g. P_DATA_READ:)

– Generate labels shall start with prefix G_ (e.g. G_MUX:)

IN3160 Design principles and rules for FPGA and ASIC 31

Development parallelism and pipelining

• Designs are usually divided into a control structure and one or more data paths

• The control structure is often implemented first with:

– Processor interfaces (e.g. AXI4, PCI-E)

– Access to control registers and RAMs.

– Extra functionality for testing interrupts to processor from register modules.

– Communication between internal and external processors

– Complete test circuit with top module and internal modules like core, CRU, etc.

• No detour or dead end!

– Dummy modules where all inputs may be connected to all outputs or all output signals set to

inactive ‘0’ or ‘1’.

– SW has to generate lab test programs for register access, RAM access and interrupt testing

• Test basic infrastructure before functional testing!

• Data path and data path control

– Full or often incremental release of data paths for target/lab verification with SW

– Changes in the initial version of the control structure modules may be needed

IN3160 Design principles and rules for FPGA and ASIC 32

Simulation vs lab debug

• It is very important to have a thoroughly simulated design with good test

benches before lab. testing.

• Most of the warnings from simulation, synthesis and P&R tools should be

removed or explained.

• Use on-chip logic analyzer (like Xilinx ILA, Synopsys Identify or

Intel/Altera’s Signal tap) to find internal FPGA bugs, but also use it to find

errors or misunderstandings in external component interfaces and timing.

• Errors in design and testbench should be identified by simulation and then

fixed and simulated before more lab. testing.

– Do not hope/believe the functional error is fixed – know that it is fixed!

• Simulation environment should be used actively during lab/system testing

IN3160 Design principles and rules for FPGA and ASIC 33

	Default Section
	Slide 1: IN3160
	Slide 2: Application Specific Integrated Circuit
	Slide 3: When should an FPGA/CPLD be used?
	Slide 4: Main advantages of FPGA development over ASIC
	Slide 5: FPGA-to-ASIC
	Slide 6: ASIC-to-FPGA
	Slide 7: Coding styles
	Slide 8: Pipelining
	Slide 9: Pipelining in digital systems
	Slide 10: Pipelining with VHDL example
	Slide 11: Pipelining with VHDL example cont.
	Slide 12: Pipelining with VHDL example problem
	Slide 13: Pipelining with VHDL; solution with pipelining
	Slide 14: Number of logic levels
	Slide 15: Asynchronous logic
	Slide 16: Asynchronous design principles
	Slide 17: Asynchronous TRNG basic principle with XOR’d output
	Slide 18: Asynchronous TRNG multiple ring design
	Slide 19: Clocks
	Slide 20: Clock enabling vs clock gating
	Slide 21: Implementation on FPGA
	Slide 22: Implementation on FPGA cont.
	Slide 23: General C (C++) with High Level Synthesis (HLS) HLS is lectured in IN5200 and used in lab
	Slide 24: FPGA and ASIC development process
	Slide 25: Code rules I
	Slide 26: Code rules II
	Slide 27: Code rules III
	Slide 28: Code rules IV
	Slide 29: Naming rules I
	Slide 30: Naming rules II
	Slide 31: Naming rules III
	Slide 32: Development parallelism and pipelining
	Slide 33: Simulation vs lab debug

