
IN3200/IN4200: High-Performance Computing &
Numerical Projects

Course overview & quick recap of serial
programming

Xing Cai

Simula Research Laboratory & University of Oslo, Norway

Spring 2022

Motivation from the real life

https://covid19-hpc-consortium.org (website last visited on 2022.01.17)

https://covid19-hpc-consortium.org
https://covid19-hpc-consortium.org

Motivation from the real life (2)

https://www.ukri.org/ (website last visited on 2022.01.17)

https://www.ukri.org/our-work/tackling-the-impact-of-covid-19/addressing-technological-challenges/how-high-performance-computings-power-helped-fight-covid-19/
https://www.ukri.org/

Real-life example 1

https://phys.org/news/2020-09-coronavirus-machine.html

https://phys.org/news/2020-09-coronavirus-machine.html
https://phys.org/news/2020-09-coronavirus-machine.html

Real-life example 1 (cont’d)

To model key proteins used by
coronavirus for its reproduction
Use basic math and physics of
Newton’s equations and quantum
mechanics to calculate the properties
of these proteins
HPC & supercomputers allow much
faster simulations
Goal: Finding ways to improve
COVID-19 drugs
Research team from University of
North Texas

Simulations done on Frontera: No. 9 supercom-

puter in the world (according to TOP500 ranking in

Nov. 2020)

https://phys.org/news/2020-09-coronavirus-machine.html

https://www.tacc.utexas.edu/systems/frontera
https://www.youtube.com/watch?v=qXHAu7HDhNE
https://phys.org/news/2020-09-coronavirus-machine.html

Real-life example 2

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/
https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

Real-life example 2 (cont’d)

Large-scale, rapid genomic sequencing
and analysis of the coronavirus
Relying on a large shared system that
provides 2.5 petabytes of HPC data
storage, also a huge amount of
memory (78 terabytes)
Goal: Unlocking the secrets of the
coronavirus
Research team from Cardiff University
in Wales

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/
https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

More about fighting COVID19 with HPC

https://beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkId=86826125

https://beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkId=86826125
https://beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkId=86826125

General motivations for HPC

Many problems in natural sciences can benefit from large-scale
or huge-scale computations

more details
better accuracy
more advanced models

The need for computing is ever-increasing
However, standard laptop PCs or desktop computers are not
powerful enough!

Huge computation example 1 (Climate Simulation)

NASA Center for Climate Simulation

Earth surface area: 510, 072, 000 km2

If a spatial resolution of 1× 1km2 is adopted → 5.1× 108

(510 million) small patches
If a spatial resolution 100× 100m2 is adopted → 5.1× 1010

(51 billion) small patches
Additional layers in the vertical direction
High resolution in the time direction

Example 2 (Subcellular Calcium Dynamics Simulation)

Size of one cardiac muscle cell: 100µm× 10µm× 10µm
Width of calcium release channels: 1 nanomater (nm)
Ideal computational mesh resolution: 1 nm
Computational mesh required: 105 × 104 × 104 (in total 1013

computational voxels)
Number of simulation time steps needed: ∼ 106

Motivations (cont’d)

Parallel computers are now everywhere!
CPUs nowadays have multiple “cores” on a chip
One computer may have several multicore chips
There are also accelerator-based parallel architectures —
GPGPU (general-purpose graphics processing unit)
Clusters of different kinds

What do we learn in IN3200/IN4200?

High-performance computing (HPC) – an introduction

Proper implementation of numerical algorithms
Effective use of the hardware for numerical computations

After finishing the course, you should

be able to write simple parallel programs with sufficiently good
performance
be able to learn more about advanced computing later on your
own

Part 1 of the course: Serial programming

A brief architectural overview of modern cache-based
microprocessors
Inherent performance limitations of microprocessors
Basic C programming
Optimization strategies of serial code

Part 2 of the course: Parallel programming

Parallel computer architecture
Theoretical considerations of parallel computing
Shared-memory parallel programming (OpenMP)
Distributed-memory parallel programming (MPI)

Why learning parallel programming?

Parallel computing – a form of parallel processing by
concurrently utilizing multiple computing units for one
computational problem

shortening computing time
solving larger problems

However . . .
modern multicore-based computers are good at multi-tasking,
but not good at automatically computing one problem in
parallel
automatic parallelization compilers have had little success
special parallel programming languages have had little success
serial computer programs have to be modified or completely
rewritten to utilize parallel computers

Learning parallel programming is thus important!

Textbook

Georg Hager, Gerhard Wellein
Introduction to High Performance Computing for Scientists
and Engineers

1st Edition, CRC Press, ISBN 9781439811924

Teaching approaches

Focus on fundamental issues
parallel programming = serial programming + finding
parallelism + enforcing work division and collaboration

Use of examples relevant for natural sciences
mathematical details are not required
understanding basic numerical algorithms is needed
implementing basic numerical algorithms is essential

Hands-on programming exercises and tutoring
English is the “official language” of the course, but students
should feel free to ask questions, write emails/reports in
Norwegian

Recapitulation of serial programming
+

some difficult issues in C programming

A tutorial in C programming will be given in the next lecture

What is serial programming?

Roughly speaking, a computer program executes a sequence of
operations applied to data structures
A program is normally written in a programming language
Data structures:

variables of primitive data types (char, int, float,
double etc.)
variables of composite and abstract data types (struct in C,
class in Java & Python)
array variables

Operations:
statements and expressions
functions

Variables

In a dynamically typed programming language (e.g. Python)
variables can be used without declaration beforehand
a = 1.0
b = 2.5
c = a + b

In statically typed languages (e.g. Java and C) declaration of
variables must be done first
double a, b, c;

a = 1.0;
b = 2.5;
c = a + b;

Simple example

Suppose we have temperature measurement for each hour
during a day
t1 is the temperature at 1:00 o’clock, t2 is the temperature at
2:00 o’clock, and so on.
How to find the average temperature of the day?
We need to first add up all the 24 temperature measurements:

T = t1 + t2 + . . .+ t24 =
24∑
i=1

ti

The average temperature can then be calculated as
T

24
.

Simple example (cont’d)

How to implement the calculations as a computer program?
First, create an array of 24 floating-point numbers to store the
24 temperatures. That is, t[0] stores t1, t[1] stores t2 and
so on. Note that array index starts from 0!
Sum up all the values in the array t

Same syntax for the computational loop in Java & C:
T = 0;
for (i=0; i<24; i++)

T = T + t[i];
Syntax for Python:
T = 0
for i in range(0,24):

T = T + t[i]

Finally, t_average = T/24.0;

Similarities and differences between languages

For scientific applications, arrays of numerical values are the
most important basic building blocks of data structure
Extensive use of for-loops for doing computations
Different syntax details

allocation and deallocation of arrays
Java: double[] v=new double[n];
C: double *v=malloc(n*sizeof(double));
Python: v=zeros(n,dtype=float64) (using NumPy)

definition of composite and abstract data types
I/O

C as the main choice of programming language

C is one of the dominant programming languages in
computational sciences
Syntax of C has inspired many newer languages (C++, Java,
Python)
Good computational efficiency
C is ideal for using MPI and OpenMP (also GPU
programming)
We will thus choose C as the main programming language
(Most of the textbook’s coding examples are in Fortran, but
many of the “performance-engineering” principles are the
same.)

Some words about pointers in C

A variable in a program has a name and type, its value is
stored somewhere in the memory of a computer
Type *p declares a pointer to a variable of datatype Type

A pointer is actually a special type of variable, used to hold
the memory address of a variable
From a variable to its pointer: int a; int *p; p = &a;

We can use a pointer to change the variable value *p = 2;
(The value of a is now 2.)
We can use several pointers (if needed) to work with an array:
int *p = (int*)malloc(10*sizeof(int));
int *p2 = p + 3; /* p2 is now pointing to p[3] */

Allocating multi-dimensional arrays

Let’s allocate a 2D array for representing a m × n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


Java:
double[][] A = new double[m][n];

C:
double **A = (double**)malloc(m*sizeof(double*));
for (i=0; i<m; i++)

A[i] = (double*)malloc(n*sizeof(double));

Same syntax in Java and C for indexing and traversing a 2D
array
for (i=0; i<m; i++)

for (j=0; j<n; j++)
A[i][j] = i+j;

More about two-dimensional arrays in C (1)

C doesn’t have true multi-dimensional arrays, a 2D array is
actually an array of 1D arrays

A[i] is a pointer to row number i+1
It is also possible to use static memory allocation of fix-sized
2D arrays, for example:
double A[10][8];

However, the size of the array is decided at compiler time (not
runtime)

More about two-dimensional arrays in C (2)

Dynamic memory allocation of 2D arrays through e.g. malloc
Another way of dynamic allocation, to ensure contiguous
underlying data storage (for good use of cache):
double *A_storage=(double*)malloc(n*n*sizeof(double));
double **A = (double**)malloc(n*sizeof(double*));
for (i=0; i<n; i++)

A[i] = &(A_storage[i*n]);

.

.

.

double**

.

double*

Deallocation of arrays in C

If an array is dynamically allocated, it is important to free the
storage when the array is not used any more
Example 1
int *p = (int*)malloc(n*sizeof(int));
/* ... */
free(p);

Example 2
double **A = (double**)malloc(m*sizeof(double*));
for (i=0; i<m; i++)

A[i] = (double*)malloc(n*sizeof(double));
/* ... */
for (i=0; i<m; i++)

free(A[i]);
free(A);

Be careful! Memory allocation and deallocation can easily lead
to errors

Functions in C

Function declaration specifies name, type of return value, and
(optionally) a list of parameters
Function definition consists of declaration and a block of code,
which encapsulates some operation and/or computation
return_type function_name (parameter declarations)
{

declarations of local variables
statements

}

Function arguments

All arguments to a C function are passed by value
That is, a copy of each argument is passed to the function
void test (int i) {

i = 10;
}

The change of i inside test has no effect when the function
returns
Passing pointers as function arguments can be used to get
output
void test (int *i) {

*i = 10;
}

The change of i inside test now has effect

Function example 1: swapping two values

void swap (int *a, int *b)
{

int tmp;
tmp = *a;
*a = *b;
*b = tmp;

}

Function example 2: smoothing a vector

We want to smooth the values of a vector v by the following
formula:

vnew
i = vi + c (vi−1 − 2vi + vi+1) , 1 ≤ i < n − 1

where c is a constant
void smooth (double *v_new, double *v, int n, double c)
{

int i;
for (i=1; i<n-1; i++)

v_new[i] = v[i] + c*(v[i-1]-2*v[i]+v[i+1]);
v_new[0] = v[0];
v_new[n-1] = v[n-1];

}

Similar computations occur frequently in numerical
computations

Function example 3: matrix-vector multiplication

We want to compute y = Ax, where A is a m × n matrix, y is
a vector of length m and x is a vector of length n:

yi = Ai1x1 + Ai2x2 + . . .Ainxn =
n∑

j=1

Aijxj , 1 ≤ i ≤ m

void mat_vec_prod (double **A, double *y, double *x,
int m, int n)

{
int i,j;
for (i=0; i<m; i++) {

y[i] = 0.0;
for (j=0; j<n; j++)

y[i] += A[i][j]*x[j];
}

}

