IN3200/IN4200: High-Performance Computing &
Numerical Projects

Course overview & quick recap of serial

programming

Xing Cai

Simula Research Laboratory & University of Oslo, Norway

Spring 2022

Motivation from the real life

COVID-19 HPC Consortium Who We Are Collaborations Projects News & Press Blog

The COVI D _1 9 H |gh PerfO rmance Bringing together the Federal government, industry, and

academic leaders to provide access to the world’s most

Com puti ng Consortium powerful high-performance computing resources in

support of COVID-19 research.

114 603

Projects Petaflops

https://covid19-hpc-consortium.org (website last visited on 2022.01.17)

https://covid19-hpc-consortium.org
https://covid19-hpc-consortium.org

Motivation from the real life (2)

% UK Research Apply for funding Manage your award Our work News and views

and Innovation Aboutus Our councils

Our main funds What we've funded Developing people and skills International
Infrastructure Research culture Impact Investing across the UK Public engagement

Tackling COVID-19| Responding to climate change 101 jobs that change the world

Home > Ourwork > Tackling the impact of COVID-19 > T ical solutions > How high performance computing’s power helped fight COVID-19

How high performance computing’s power
helped fight COVID-19

https://www.ukri.org/ (website last visited on 2022.01.17)

https://www.ukri.org/our-work/tackling-the-impact-of-covid-19/addressing-technological-challenges/how-high-performance-computings-power-helped-fight-covid-19/
https://www.ukri.org/

Real-life example 1

— Week's top Latest news

PHYS @ ORG

Nanotechnology Physics Astronomy & Space Technology

Pulling the plug on the
coronavirus copy machine

49

© ¢ -

Share

X

Email o
7 \ s
< (A

https://phys.org/news/2020-09-coronavirus-machine.html

https://phys.org/news/2020-09-coronavirus-machine.html
https://phys.org/news/2020-09-coronavirus-machine.html

Real-life example 1 (cont

@ To model key proteins used by
coronavirus for its reproduction

@ Use basic math and physics of
Newton's equations and quantum
mechanics to calculate the properties
of these proteins

e HPC & supercomputers allow much
faster simulations

Simulations done on Frontera: No. 9 supercom-

@ Goal: Finding ways to improve
COVID-19 drugs

@ Research team from University of
North Texas

puter in the world (according to TOP500 ranking in

Nov. 2020)

https://phys.org/news/2020-09-coronavirus-machine.html

https://www.tacc.utexas.edu/systems/frontera
https://www.youtube.com/watch?v=qXHAu7HDhNE
https://phys.org/news/2020-09-coronavirus-machine.html

Real-life example 2

FEATURES
—

Fighting COVID-19 With the Power
of Genomics and HPC

By Janet Morss | June 17,2020

s at Cardiff Uni ity are using the power of genomic sequencing and high performance vy f in 8 %
computing to unlock the secrets of COVID-19.

In scientific laboratories around the world, efforts are under way to put the power of genomic sequencing and high performance
computing (HPC) to work in the fight against COVID-19. At Cardiff University in Wales, a team of scientists is working with the YOU MAY ALSO LIKE

COVID-19 Genomics UK Consortium (COG-UK), to unlock the secrets of the coronavirus that causes COVID-19. FEATURES

https://www.delltechnologies.com /en-us/blog /fighting-covid-19-with-the-power-of-genomics-and-hpc/

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/
https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

Real-life example 2 (cont'd)

o Large-scale, rapid genomic sequencing
and analysis of the coronavirus

@ Relying on a large shared system that ‘
provides 2.5 petabytes of HPC data -
storage, also a huge amount of ‘ -
memory (78 terabytes)

@ Goal: Unlocking the secrets of the

coronavirus ‘_*“

@ Research team from Cardiff University
in Wales

https://www.delltechnologies.com /en-us/blog /fighting-covid-19-with-the-power-of-genomics-and-hpc/

https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/
https://www.delltechnologies.com/en-us/blog/fighting-covid-19-with-the-power-of-genomics-and-hpc/

More about fighting COVID19 with HPC

A View Image Credit

Why are supercomputers so T
important for COVID-19 research? EHEI@O

https:/ /beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkld=86826125

https://beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkId=86826125
https://beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkId=86826125

General motivations for HPC

@ Many problems in natural sciences can benefit from large-scale
or huge-scale computations

e more details
o better accuracy
e more advanced models

@ The need for computing is ever-increasing

@ However, standard laptop PCs or desktop computers are not
powerful enough!

Huge computation example 1 (Climate Simulation)

NASA Center for Climate Simulation

o Earth surface area: 510,072,000 km?

o If a spatial resolution of 1 x 1km? is adopted — 5.1 x 108
(510 million) small patches

o If a spatial resolution 100 x 100m? is adopted — 5.1 x 10%°
(51 billion) small patches

o Additional layers in the vertical direction

@ High resolution in the time direction

Example 2 (Subcellular Calcium Dynamics Simulation)

ca” L-type Ca™ Ryanodine Na’/Ca™

\:’ ions - channel receptors GD exchanger
SERCA

pump

i
1 Zline

Dyadic cleft

1Zline 2um

@ Size of one cardiac muscle cell: 100um x 10um x 10um
e Width of calcium release channels: 1 nanomater (nm)

@ Ideal computational mesh resolution: 1 nm
°

Computational mesh required: 10° x 10* x 10* (in total 10%3
computational voxels)

o Number of simulation time steps needed: ~ 10°

Motivations (cont'd)

@ Parallel computers are now everywhere!

e CPUs nowadays have multiple “cores” on a chip

One computer may have several multicore chips

o There are also accelerator-based parallel architectures —
GPGPU (general-purpose graphics processing unit)
Clusters of different kinds

What do we learn in IN3200/IN42007

High-performance computing (HPC) — an introduction

@ Proper implementation of numerical algorithms

o Effective use of the hardware for numerical computations
After finishing the course, you should

@ be able to write simple parallel programs with sufficiently good
performance

@ be able to learn more about advanced computing later on your
own

Part 1 of the course: Serial programming

o A brief architectural overview of modern cache-based
microprocessors

@ Inherent performance limitations of microprocessors
@ Basic C programming

o Optimization strategies of serial code

Part 2 of the course: Parallel programming

o Parallel computer architecture

@ Theoretical considerations of parallel computing
@ Shared-memory parallel programming (OpenMP)
°

Distributed-memory parallel programming (MPI)

Why learning parallel programming?

o Parallel computing — a form of parallel processing by
concurrently utilizing multiple computing units for one
computational problem

e shortening computing time

e solving larger problems

e However ...

e modern multicore-based computers are good at multi-tasking,
but not good at automatically computing one problem in
parallel

e automatic parallelization compilers have had little success

o special parallel programming languages have had little success

e serial computer programs have to be modified or completely
rewritten to utilize parallel computers

o Learning parallel programming is thus important!

_ Introduction to
High Performance
Computing for
Scientists;and Engineers

-

Gerhard Wellein

Georg Hager, Gerhard Wellein
Introduction to High Performance Computing for Scientists
and Engineers

1st Edition, CRC Press, ISBN 9781439811924

Teaching approaches

e Focus on fundamental issues
o parallel programming = serial programming + finding
parallelism + enforcing work division and collaboration

Use of examples relevant for natural sciences
e mathematical details are not required
o understanding basic numerical algorithms is needed
e implementing basic numerical algorithms is essential

Hands-on programming exercises and tutoring

English is the “official language” of the course, but students
should feel free to ask questions, write emails/reports in
Norwegian

Recapitulation of serial programming

some difficult issues in C programming

A tutorial in C programming will be given in the next lecture

What is serial programming?

@ Roughly speaking, a computer program executes a sequence of
operations applied to data structures

@ A program is normally written in a programming language
@ Data structures:
o variables of primitive data types (char, int, float,
double etc.)
o variables of composite and abstract data types (struct in C,
class in Java & Python)
e array variables
@ Operations:

e statements and expressions
o functions

@ In a dynamically typed programming language (e.g. Python)
variables can be used without declaration beforehand

a=1.0
b =2.5
c=a+b

e In statically typed languages (e.g. Java and C) declaration of
variables must be done first

double a, b, c;
=1.0;
= 2.5;

+ b;

Simple example

Suppose we have temperature measurement for each hour
during a day

(]

t; is the temperature at 1:00 o'clock, t» is the temperature at
2:00 o'clock, and so on.

How to find the average temperature of the day?

We need to first add up all the 24 temperature measurements:

24
T=ti+tb+...+tu=)
=1

T
The average temperature can then be calculated as TR

Simple example (cont'd)

@ How to implement the calculations as a computer program?

@ First, create an array of 24 floating-point numbers to store the
24 temperatures. That is, t[0] stores t;, t[1] stores t, and
so on. Note that array index starts from 0!

@ Sum up all the values in the array t

e Same syntax for the computational loop in Java & C:
T = 0;
for (i=0; i<24; i++)
T =T+ t[i];
e Syntax for Python:

in range(0,24):
T + t[i]

L=}
]
N = O

o Finally, t_average = T/24.0;

Similarities and differences between languages

e For scientific applications, arrays of numerical values are the
most important basic building blocks of data structure

o Extensive use of for-loops for doing computations

o Different syntax details
o allocation and deallocation of arrays

o Java: double[] v=new double[n];
o C: double *v=malloc(n*sizeof (double));
o Python: v=zeros(n,dtype=float64) (using NumPy)

o definition of composite and abstract data types

o 1/0

C as the main choice of programming language

C is one of the dominant programming languages in
computational sciences

@ Syntax of C has inspired many newer languages (C++, Java,
Python)

@ Good computational efficiency

e Cis ideal for using MPI and OpenMP (also GPU
programming)

@ We will thus choose C as the main programming language

@ (Most of the textbook's coding examples are in Fortran, but
many of the “performance-engineering” principles are the
same.)

Some words about pointers in C

A variable in a program has a name and type, its value is
stored somewhere in the memory of a computer

Type *p declares a pointer to a variable of datatype Type

(]

A pointer is actually a special type of variable, used to hold
the memory address of a variable

From a variable to its pointer: int a; int *p; p = &a;

We can use a pointer to change the variable value *p = 2;
(The value of a is now 2.)

@ We can use several pointers (if needed) to work with an array:

int *p = (int*)malloc(10*sizeof (int));
int *p2 = p + 3; /* p2 is now pointing to p[3] */

Allocating multi-dimensional arrays

o Let's allocate a 2D array for representing a m X n matrix

all di2 ... din
ani dno don
A=
dml dm2 --- Admn
@ Java:
double[][] A = new double[m] [n];
o C:

double **A = (doublex**)malloc(m*sizeof (doublex));
for (i=0; i<m; i++)

A[i] = (doublex*)malloc(n*sizeof (double)) ;

@ Same syntax in Java and C for indexing and traversing a 2D

array
for (i=0; i<m; i++)

for (j=0; j<n; j++)

ATi1[3] = i+j;

More about two-dimensional arrays in C (1)

@ C doesn’t have true multi-dimensional arrays, a 2D array is

actually an array of 1D arrays
arrav:

@ A[i] is a pointer to row number j+1

@ It is also possible to use static memory allocation of fix-sized
2D arrays, for example:

double A[10][8];

However, the size of the array is decided at compiler time (not
runtime)

More about two-dimensional arrays in C (2)

@ Dynamic memory allocation of 2D arrays through e.g. malloc

@ Another way of dynamic allocation, to ensure contiguous
underlying data storage (for good use of cache):

double *A_storage=(double*)malloc(n*n*sizeof (double));
double **A = (doublex**)malloc(n*sizeof (doublex));
for (i=0; i<n; i++)

A[i] = &(A_storage[ix*n]);

double**

LI LI

double*

Deallocation of arrays in C

o If an array is dynamically allocated, it is important to free the
storage when the array is not used any more
o Example 1
int *p = (int*)malloc(n*sizeof (int));
/x .. %/
free(p);
o Example 2
double **A = (double**)malloc(m*sizeof (doublex));
for (i=0; i<m; i++)
Ali] = (double*)malloc(n*sizeof (double));
VA S V)
for (i=0; i<m; i++)
free(A[i]);
free(A);
@ Be carefull Memory allocation and deallocation can easily lead
to errors

@ Function declaration specifies name, type of return value, and
(optionally) a list of parameters

@ Function definition consists of declaration and a block of code,
which encapsulates some operation and/or computation
return_type function_name (parameter declarations)

{

declarations of local variables
statements

Function arguments

@ All arguments to a C function are passed by value
@ That is, a copy of each argument is passed to the function

void test (int i) {
i = 10;
}

The change of i inside test has no effect when the function
returns

@ Passing pointers as function arguments can be used to get

output

void test (int *i) {
*i = 10;

+

The change of i inside test now has effect

Function example 1: swapping two values

void swap (int *a, int *b)
{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

Function example 2: smoothing a vector

o We want to smooth the values of a vector v by the following
formula:

Vi =vitc(vici—2vit+ Vi), 1<i<n-1

!

where ¢ is a constant

void smooth (double *v_new, double *v, int n, double c)
{
int i;
for (i=1; i<n-1; i++)
v_new[i] = v[i] + c*x(v[i-1]-2%v[i]+v[i+1]);
v_new[0] = v[0];
v_new[n-1] = v[n-1];

}

@ Similar computations occur frequently in numerical
computations

Function example 3: matrix-vector multiplication

@ We want to compute y = Ax, where A is a m X n matrix, y is
a vector of length m and x is a vector of length n:

n
yi=Aixi +Aipxa + .. Aipxy = ZAUXJ', 1<i<m
=1

void mat_vec_prod (double **A, double *y, double *x,
int m, int n)

{
int 1i,j;
for (i=0; i<m; i++) {
y[il = 0.0;

for (j=0; j<n; j++)
y[il += A[i][j1*x[j1;

