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Motivation from the real life

COVID-19 HPC Consortium Who We Are Collaborations Projects News & Press Blog

The COVI D _1 9 H |gh PerfO rmance Bringing together the Federal government, industry, and

academic leaders to provide access to the world’s most

Com puti ng Consortium powerful high-performance computing resources in

support of COVID-19 research.

114 603

Projects Petaflops

https://covid19-hpc-consortium.org (website last visited on 2022.01.17)



https://covid19-hpc-consortium.org
https://covid19-hpc-consortium.org

Motivation from the real life (2)
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Real-life example 1
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Real-life example 1 (cont

@ To model key proteins used by
coronavirus for its reproduction

@ Use basic math and physics of
Newton's equations and quantum
mechanics to calculate the properties
of these proteins

e HPC & supercomputers allow much
faster simulations

Simulations done on Frontera: No. 9 supercom-

@ Goal: Finding ways to improve
COVID-19 drugs

@ Research team from University of
North Texas

puter in the world (according to TOP500 ranking in

Nov. 2020)

https://phys.org/news/2020-09-coronavirus-machine.html
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Real-life example 2
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Fighting COVID-19 With the Power
of Genomics and HPC

By Janet Morss | June 17,2020

s at Cardiff Uni ity are using the power of genomic sequencing and high performance vy f in 8 %
computing to unlock the secrets of COVID-19.

In scientific laboratories around the world, efforts are under way to put the power of genomic sequencing and high performance
computing (HPC) to work in the fight against COVID-19. At Cardiff University in Wales, a team of scientists is working with the YOU MAY ALSO LIKE

COVID-19 Genomics UK Consortium (COG-UK), to unlock the secrets of the coronavirus that causes COVID-19. FEATURES
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Real-life example 2 (cont'd)

o Large-scale, rapid genomic sequencing
and analysis of the coronavirus

@ Relying on a large shared system that ‘
provides 2.5 petabytes of HPC data -
storage, also a huge amount of ‘ -
memory (78 terabytes)

@ Goal: Unlocking the secrets of the

coronavirus ‘\_*“

@ Research team from Cardiff University
in Wales

https://www.delltechnologies.com /en-us/blog /fighting-covid-19-with-the-power-of-genomics-and-hpc/
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More about fighting COVID19 with HPC
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Why are supercomputers so T
important for COVID-19 research? EHEI@O

https:/ /beta.nsf.gov/science-matters/why-are-supercomputers-so-important-covid-19-research?linkld=86826125
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General motivations for HPC

@ Many problems in natural sciences can benefit from large-scale
or huge-scale computations

e more details
o better accuracy
e more advanced models

@ The need for computing is ever-increasing

@ However, standard laptop PCs or desktop computers are not
powerful enough!



Huge computation example 1 (Climate Simulation)

NASA Center for Climate Simulation

o Earth surface area: 510,072,000 km?

o If a spatial resolution of 1 x 1km? is adopted — 5.1 x 108
(510 million) small patches

o If a spatial resolution 100 x 100m? is adopted — 5.1 x 10%°
(51 billion) small patches

o Additional layers in the vertical direction

@ High resolution in the time direction



Example 2 (Subcellular Calcium Dynamics Simulation)

ca” L-type Ca™ Ryanodine Na’/Ca™

\:’ ions - channel receptors GD exchanger
SERCA

pump

i
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Dyadic cleft

1Zline 2um

@ Size of one cardiac muscle cell: 100um x 10um x 10um
e Width of calcium release channels: 1 nanomater (nm)

@ Ideal computational mesh resolution: 1 nm
°

Computational mesh required: 10° x 10* x 10* (in total 10%3
computational voxels)

o Number of simulation time steps needed: ~ 10°



Motivations (cont'd)

@ Parallel computers are now everywhere!

e CPUs nowadays have multiple “cores” on a chip

One computer may have several multicore chips

o There are also accelerator-based parallel architectures —
GPGPU (general-purpose graphics processing unit)
Clusters of different kinds




What do we learn in IN3200/IN42007

High-performance computing (HPC) — an introduction

@ Proper implementation of numerical algorithms

o Effective use of the hardware for numerical computations
After finishing the course, you should

@ be able to write simple parallel programs with sufficiently good
performance

@ be able to learn more about advanced computing later on your
own



Part 1 of the course: Serial programming

o A brief architectural overview of modern cache-based
microprocessors

@ Inherent performance limitations of microprocessors
@ Basic C programming

o Optimization strategies of serial code



Part 2 of the course: Parallel programming

o Parallel computer architecture

@ Theoretical considerations of parallel computing
@ Shared-memory parallel programming (OpenMP)
°

Distributed-memory parallel programming (MPI)



Why learning parallel programming?

o Parallel computing — a form of parallel processing by
concurrently utilizing multiple computing units for one
computational problem

e shortening computing time

e solving larger problems

e However ...

e modern multicore-based computers are good at multi-tasking,
but not good at automatically computing one problem in
parallel

e automatic parallelization compilers have had little success

o special parallel programming languages have had little success

e serial computer programs have to be modified or completely
rewritten to utilize parallel computers

o Learning parallel programming is thus important!



_ Introduction to
High Performance
Computing for
Scientists;and Engineers

-

Gerhard Wellein

Georg Hager, Gerhard Wellein
Introduction to High Performance Computing for Scientists
and Engineers

1st Edition, CRC Press, ISBN 9781439811924



Teaching approaches

e Focus on fundamental issues
o parallel programming = serial programming + finding
parallelism + enforcing work division and collaboration

Use of examples relevant for natural sciences
e mathematical details are not required
o understanding basic numerical algorithms is needed
e implementing basic numerical algorithms is essential

Hands-on programming exercises and tutoring

English is the “official language” of the course, but students
should feel free to ask questions, write emails/reports in
Norwegian



Recapitulation of serial programming

some difficult issues in C programming

A tutorial in C programming will be given in the next lecture



What is serial programming?

@ Roughly speaking, a computer program executes a sequence of
operations applied to data structures

@ A program is normally written in a programming language
@ Data structures:
o variables of primitive data types (char, int, float,
double etc.)
o variables of composite and abstract data types (struct in C,
class in Java & Python)
e array variables
@ Operations:

e statements and expressions
o functions



@ In a dynamically typed programming language (e.g. Python)
variables can be used without declaration beforehand

a=1.0
b =2.5
c=a+b

e In statically typed languages (e.g. Java and C) declaration of
variables must be done first

double a, b, c;
=1.0;
= 2.5;

+ b;



Simple example

Suppose we have temperature measurement for each hour
during a day

(]

t; is the temperature at 1:00 o'clock, t» is the temperature at
2:00 o'clock, and so on.

How to find the average temperature of the day?

We need to first add up all the 24 temperature measurements:

24
T=ti+tb+...+tu=)
=1

T
The average temperature can then be calculated as TR



Simple example (cont'd)

@ How to implement the calculations as a computer program?

@ First, create an array of 24 floating-point numbers to store the
24 temperatures. That is, t[0] stores t;, t[1] stores t, and
so on. Note that array index starts from 0!

@ Sum up all the values in the array t

e Same syntax for the computational loop in Java & C:
T = 0;
for (i=0; i<24; i++)
T =T+ t[i];
e Syntax for Python:

in range(0,24):
T + t[i]

L=}
]
N = O

o Finally, t_average = T/24.0;



Similarities and differences between languages

e For scientific applications, arrays of numerical values are the
most important basic building blocks of data structure

o Extensive use of for-loops for doing computations

o Different syntax details
o allocation and deallocation of arrays

o Java: double[] v=new double[n];
o C: double *v=malloc(n*sizeof (double));
o Python: v=zeros(n,dtype=float64) (using NumPy)

o definition of composite and abstract data types

o 1/0



C as the main choice of programming language

C is one of the dominant programming languages in
computational sciences

@ Syntax of C has inspired many newer languages (C++, Java,
Python)

@ Good computational efficiency

e Cis ideal for using MPI and OpenMP (also GPU
programming)

@ We will thus choose C as the main programming language

@ (Most of the textbook's coding examples are in Fortran, but
many of the “performance-engineering” principles are the
same.)



Some words about pointers in C

A variable in a program has a name and type, its value is
stored somewhere in the memory of a computer

Type *p declares a pointer to a variable of datatype Type

(]

A pointer is actually a special type of variable, used to hold
the memory address of a variable

From a variable to its pointer: int a; int *p; p = &a;

We can use a pointer to change the variable value *p = 2;
(The value of a is now 2.)

@ We can use several pointers (if needed) to work with an array:

int *p = (int*)malloc(10*sizeof (int));
int *p2 = p + 3; /* p2 is now pointing to p[3] */



Allocating multi-dimensional arrays

o Let's allocate a 2D array for representing a m X n matrix

all di2 ... din
ani dno don
A=
dml dm2 --- Admn
@ Java:
double[][] A = new double[m] [n];
o C:

double **A = (doublex**)malloc(m*sizeof (doublex));
for (i=0; i<m; i++)

A[i] = (doublex*)malloc(n*sizeof (double)) ;

@ Same syntax in Java and C for indexing and traversing a 2D

array
for (i=0; i<m; i++)

for (j=0; j<n; j++)

ATi1[3] = i+j;



More about two-dimensional arrays in C (1)

@ C doesn’t have true multi-dimensional arrays, a 2D array is

actually an array of 1D arrays
arrav:

@ A[i] is a pointer to row number j+1

@ It is also possible to use static memory allocation of fix-sized
2D arrays, for example:

double A[10][8];

However, the size of the array is decided at compiler time (not
runtime)



More about two-dimensional arrays in C (2)

@ Dynamic memory allocation of 2D arrays through e.g. malloc

@ Another way of dynamic allocation, to ensure contiguous
underlying data storage (for good use of cache):

double *A_storage=(double*)malloc(n*n*sizeof (double));
double **A = (doublex**)malloc(n*sizeof (doublex));
for (i=0; i<n; i++)

A[i] = &(A_storage[ix*n]);

double**

LI LI

double*




Deallocation of arrays in C

o If an array is dynamically allocated, it is important to free the
storage when the array is not used any more
o Example 1
int *p = (int*)malloc(n*sizeof (int));
/x .. %/
free(p);
o Example 2
double **A = (double**)malloc(m*sizeof (doublex));
for (i=0; i<m; i++)
Ali] = (double*)malloc(n*sizeof (double));
VA S V)
for (i=0; i<m; i++)
free(A[i]);
free(A);
@ Be carefull Memory allocation and deallocation can easily lead
to errors



@ Function declaration specifies name, type of return value, and
(optionally) a list of parameters

@ Function definition consists of declaration and a block of code,
which encapsulates some operation and/or computation
return_type function_name (parameter declarations)

{

declarations of local variables
statements



Function arguments

@ All arguments to a C function are passed by value
@ That is, a copy of each argument is passed to the function

void test (int i) {
i = 10;
}

The change of i inside test has no effect when the function
returns

@ Passing pointers as function arguments can be used to get

output

void test (int *i) {
*i = 10;

+

The change of i inside test now has effect



Function example 1: swapping two values

void swap (int *a, int *b)
{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;



Function example 2: smoothing a vector

o We want to smooth the values of a vector v by the following
formula:

Vi =vitc(vici—2vit+ Vi), 1<i<n-1

!

where ¢ is a constant

void smooth (double *v_new, double *v, int n, double c)
{
int i;
for (i=1; i<n-1; i++)
v_new[i] = v[i] + c*x(v[i-1]-2%v[i]+v[i+1]);
v_new[0] = v[0];
v_new[n-1] = v[n-1];

}

@ Similar computations occur frequently in numerical
computations



Function example 3: matrix-vector multiplication

@ We want to compute y = Ax, where A is a m X n matrix, y is
a vector of length m and x is a vector of length n:

n
yi=Aixi +Aipxa + .. Aipxy = ZAUXJ', 1<i<m
=1

void mat_vec_prod (double **A, double *y, double *x,
int m, int n)

{
int 1i,j;
for (i=0; i<m; i++) {
y[il = 0.0;

for (j=0; j<n; j++)
y[il += A[i][j1*x[j1;



