IN3200/IN4200: C Programming Tutorial

A drastically simplified version of https://www.tutorialspoint.com/cprogramming/

Target audience: new beginners of C programming

https://www.tutorialspoint.com/cprogramming/

First things first

@ A program in C is made up of
o Preprocessor commands

Variables

Statements and expressions

Functions

Comments

@ A program in C can be as simple as having only 3 lines, or as
comprehensive as being composed of millions of lines

@ A program in C can be stored in one file with name extension
.c (or spread over many .h and .c files)

@ Use of libraries—groups of already-coded functions and
declarations—actually happens all the time

Hello-World example

#include <stdio.h>
int main() {
/* my first program in C */

printf ("Hello, World! \n");

return O;

Hello-World example explained

@ #include <stdio.h> is a preprocessor command, which tells
a C compiler to include the header file stdio.h

@ int main() defines the main function where the program
execution begins

@ /*...x/ is a comment

e printf(...) is a standard library function available in C
(found in <stdio.h>, for sending formatted output to the
standard output stream)

@ return 0; terminates the main() function and returns the
value 0

Demo of compilation and execution

Identifiers

@ An identifier is a name used to identify a variable, function, or
any other user-defined item

@ Examples of acceptable identifiers

mohd zara abc move_name a_123
mynameb50 _temp @ j a23b9 retVal

o Cis a case-sensitive programming language

Keywords — reserved words

auto else long switch
break enum | register | typedef
case extern | return union
char float short | unsigned
const for signed void
continue | goto sizeof volatile
default if static while
do int struct | Packed
double

Keywords can not be used as identifiers.

C data types

e Basic Types
They are arithmetic types and are further classified into: (a)

integer types and (b) floating-point types

o Derived types
They include (a) Pointer types, (b) Array types, (c) Structure
types, (d) Union types and (e) Function types

Integer types

Type Storage| Value range
size
char 1 byte | -128 to 127 or 0 to 255
unsigned char | 1 byte | O to 255
signed char 1 byte | -128 to 127
int 2 or 4 | -32,768 to 32,767 or -2,147,483,648

bytes to 2,147,483,647
unsigned int 2 or 4| 0 to 65,535 or 0 to 4,294,967,295

bytes
short 2 bytes | -32,768 to 32,767
unsigned short | 2 bytes | 0 to 65,535
long 4 bytes | -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes | 0 to 4,294,967,295

The sizeof operator

To get the exact size of a type or a variable on a particular platform,
you can use the sizeof operator. The expression sizeof (type)
yields the storage size of the object or type in number of bytes.

#include <stdio.h>

int main() {
printf ("Storage size for int : %d \n", sizeof(int));

return O;

Floating-point types

Type | Storage| Value range Precision

size
float | 4 bytes | 1.2E-38 to 3.4E+38 6 decimal places
double | 8 bytes | 2.2E-308 to 1.8E+308 15 decimal places
long 16 3.4E-4932 to 1.2E+4932 | 18 decimal places
double | bytes

Note: The actual values can be machine-dependent!

Header file float.h

The header file float.h defines macros that allow you to use these
values and other details about the binary representation of real
numbers in your programs

#include <stdio.h>
#include <float.h>

int main() {
printf ("Storage size for float : %lu \n", sizeof(float));
printf("Minimum float positive value: %E\n", FLT_MIN);
printf ("Maximum float positive value: %E\n", FLT_MAX);
printf ("Precision value: J%d\n", FLT_DIG);

return O;

C variables

A variable is a name given to a storage area that a C program can
manipulate. Each variable in C has a specific type, which
determines the size and layout of the variable’s memory; the range
of values that can be stored within that memory; and the set of
operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the
underscore character. It must begin with either a letter or an
underscore. Upper and lowercase letters are distinct because C is
case-sensitive.

int i, j, k;
char c, ch;
float £, salary;
double d;

An operator is a symbol that tells the compiler to perform specific
mathematical or logical functions. C language is rich in built-in
operators:

Arithmetic operators + - x /% ++ --

Relational operators == != > < >= <=

°
°
o Logical operators && || !
@ Bitwise operators

°

Assignment operators

Bitwise operators

A bitwise operator works on bits and performs bit-by-bit operation

p&q | pla | pPq

Some examples:

== =lo| =
= OO

k=l =1k]
[« K Ne]

o= Oolo

Decision making

Decision making structures require that the programmer specifies
one or more conditions to be evaluated or tested by the program,
along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements
to be executed if the condition is determined to be false.

If condition
is false

If condition
is true

conditional
code

To execute a statement or a group of statements multiple times:

o for
@ while

@ do ... while

Functions

A function is a group of statements that together perform a task.
Every C program has at least one function, which is main(), and
you can define additional functions.

A function declaration tells the compiler about a function's name,
return type, and parameters. A function definition provides the
actual body of the function.

The general form of a function definition in C programming
language:

return_type function_name(parameter list) {
body of the function
}

Function arguments

If a function is to use arguments, it must declare variables that
accept the values of the arguments. These variables are called the
formal parameters of the function.

Formal parameters behave like other local variables inside the
function and are created upon entry into the function and destroyed
upon exit.

While calling a function, the formal parameters get the values (that
is, copies) of the actual parameters.

One example

#include<stdio.h>
void func_1(int);

int main()

{
int x = 10;
printf ("Before function call\n");
printf("x = %d\n", x);
func_1(x);
printf ("After function call\n");
printf("x = %d\n", x);
return 0;

}

void func_1(int a)

{
a += 1;
a++;

printf("\na = %d\n\n", a);

Scope rules

A scope in any programming is a region of the program where a
defined variable can have its existence and beyond that variable it
cannot be accessed. There are three places where variables can be
declared in C programming language:

@ Inside a function or a block: local variables.
@ Outside of all functions: global variables.

@ In the definition of function parameters: formal parameters.

Global variables

Global variables hold their values throughout the lifetime of your
program and they can be accessed inside any of the functions
defined for the program. Should be used with care!

#include <stdio.h>

/* global variable declaration */
int g;

int main () {

/* local variable declaration */
int a, b;

/* actual initialization */

a = 10;
b = 20;
g =a+ b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return O;

An array is one kind of data structure that can store a sequential

collection of elements of the same type.

Instead of declaring individual variables, such as NumberO,
Numberl, ..., and Number99, you can declare one array variable,
named such as Numbers, and use Numbers[0], Numbers[1], ...,
and Numbers [99] to represent individual variables. A specific
element in an array is accessed by an index.

First Element

!

Last Element

|

Numbers[0]

Numbers[1]

Numbers[2]

Numbers[3]

Fix-sized arrays

A programmer can specify the type of the elements and the number
of elements required by an array

type arrayName [arraySize];

arraySize must be an integer constant greater than zero.

Address in memory

Every variable is a memory location and every memory location has
its address defined which can be accessed using ampersand (&)
operator, which denotes an address in memory.

#include <stdio.h>

int main () {

int varl;
char var2[10];

printf ("Address of varl variable: %x\n", &varl);
printf("Address of var2 variable: %x\n", &var2);

return O;

A pointer is a variable whose value is the address of another
variable, i.e., direct address of the memory location. Like any
variable or constant, you must declare a pointer variable before
using it to store any variable address.

int *ip; /* pointer to an integer */
double *dp; /* pointer to a double */
float *fp; /* pointer to a float */

char *ch /* pointer to a character */

How to use pointers?

@ Define a pointer variable
@ Assign the address of a variable to a pointer variable
@ Access the value at the address stored in the pointer variable
(via operator *)
#include <stdio.h>
int main () {
int var = 20; /* actual variable declaration */
int *ip; /* pointer variable declaration */
ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */
printf ("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */
printf("Value of *ip variable: %d\n", *ip);

return O;

More pointer concepts

@ Pointer arithmetic: Four arithmetic operators can be used on
pointers: +4, --, +, -

@ Array of pointers: You can define an array to hold a
sequence of pointers.

e Pointer to pointer: C allows you to have pointer on a pointer
and so on.

@ Passing pointers to functions in C: Passing an argument by
address allows the passed argument to be changed.

@ Return pointer from functions in C: C allows a function to
return a pointer to the local variable, static variable, and
dynamically allocated memory as well. (Be very careful with

An example of function returning a point

#include <stdio.h>

int *getMax(int *m, int *n) {
/* if the value pointed by pointer m is greater than n
* then, return the address stored in the pointer variable m */
if (#m > *n) {
return m;
}
else {
return n;
}
}

int main(void) {
// integer variables
int x = 100;
int y = 200;

// pointer variable
int *max = NULL;

/* get the variable address that holds the greater value
* for this we are passing the address of x and y
* to the function getMax() */

max = getMax(&x, &y);

// print the greater value
printf("Max value: %d\n", *max);

return 0;

structure is a user defined data type available in C that allows to
combine data items of different kinds.

To define a structure, you must use the struct statement:

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

} book;

Dynamic memory management

The C programming language provides several functions for
memory allocation and management. These functions can be found
in the <stdlib.h> header file.

@ void *calloc(int num, int size); — allocates an array of
num elements each of which size in bytes will be size.

@ void free(void *address); — releases a block of memory
block specified by address.

@ void *malloc(int num); — allocates an array of num bytes
and leave them uninitialized.

@ void *realloc(void *address, int newsize); —
re-allocates memory extending it upto newsize.

Example of dynamic memory allocation

#include <stdio.h>
#include <stdlib.h>

int main()
{

int n, i, *ptr, sum = O;

printf ("Enter number of elements: ");
scanf ("%d", &n);

ptr = (int*) malloc(n * sizeof (int));
if (ptr == NULL) {
printf ("Error! memory not allocated."); exit(-1);

}

printf ("Enter elements: ");

for (i = 0; i < n; ++i) {
scanf ("%d", &(ptrl[il));
sum += ptrl[il;

}

printf ("Sum = %d\n", sum);
free(ptr);
return O;

Command-line arguments

Input arguments to the main function:

#include <stdio.h>
int main(int argc, char *argv[]) {

if(arge == 2) {
printf ("The argument supplied is %s\n", argv[1]);

b
else if(argc > 2) {
printf ("Too many arguments supplied.\n");

}
else {

printf ("One argument expected.\n");
}

Simple 1/0

A file represents a sequence of bytes, regardless of it being a text
file or a binary file. C programming language provides both
high-level functions and low-level function calls to handle files.

@ Opening a file
FILE *fopen(const char *filename, const char *mode) ;
@ Closing a file
int fclose(FILE *fp);
e Writing to a file (many different functions available)
@ Reading to a file (many different functions available)
@ Binary 1/0O functions

size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);

