
IN3200/IN4200: Chapter 3
Data access optimization

(Part 2)

Textbook: Hager & Wellein, Introduction to High Performance Computing for Scientists and
Engineers



Quick repetition of Part 1

Bandwidth-based performance modeling/prediction—to get a
rough idea about the maximumly achievable performance of a code.

One can estimate the maximumly achievable performance of a
code, if we know a characteristic ratio that describes the processor
(machine balance) and a characteristic ratio that describes the code
(code balance).



Repetition; The concept of “machine balance”

Machine balance, Bm, of a processor is the ratio between the
maximum memory bandwidth and the peak FP (floating-point)
performance:

Bm =
memory bandwidth [GWords/sec]
peak FP performance [GFlops/sec]

=
bmax

Pmax

“Word” = one DP (double-precision) value (8 bytes)

The machine balance for a modern processor has typically a very
small value (meaning the memory is “slow” relative to floating-point
operations).



Repetition; The concept of “code balance”

To characterize a code, we can calculate the code balance Bc:

Bc =
data traffic [Words]

floating-point operations [Flops]

That is, you need to count the number of FP operations (easy),
and also count (or estimate) the number of data words transfered
over the performance-limiting data path. (Counting the actual
amount of transfers can be non-trivial.)



Repetition; To estimate maximumly achievable performance

When you know the machine balance Bm of a CPU, and you want
to run a code with Bc as its code balance.

What will be the maximumly achievable performance P (in
Flops/sec)?

P = min
(
Pmax,

bmax

Bc

)
Recall: Pmax denotes the theoretical peak FP performance, bmax
denotes the theoretical maximum bandwidth of the
performance-limiting data path. (To be more realistic, bmax can be
replaced by bS, which denotes realistically achievable memory
bandwidth.)

In case P � Pmax: more analysis is needed to find out whether the
code balance Bc can be improved by data access optimization (that
is, decreasing memory traffic).



Revisiting the first example of “balance analysis”

for (i=0; i<N; i++)
A[i] = B[i] + C[i]*D[i];

Each iteration has three loads (B[i],C[i],D[i]), one store
(A[i]) and two floating-point operations ⇒ Bc =

3+1
2 = 2

Indeed, data traffic to/from memory is always in cachelines,
but this doesn’t change the code balance for this example:

Suppose each cacheline has space for 8 words
One cacheline containing 8 values of arrray A is stored to
memory every 8th iteration
One cacheline containing 8 values of arrray B is loaded from
memory every 8th iteration
One cacheline containing 8 values of arrray C is loaded from
memory every 8th iteration
One cacheline containing 8 values of arrray D is loaded from
memory every 8th iteration
For every 8 iterations, 4 cachelines are stored/loaded to/from
memory, that is, 32 words of data traffic
During 8 iterations, 16 floating-point operations executed
Code balance is still 2 = 32

16



Case study: The 2D Jacobi algorithm

Skipping the mathematical and numerical details (given in Section
3.3 of the textbook), let us focus on the following computation:

for (it=0; it<itmax; it++) {
for (k=1; k<kmax-1; k++)

for (i=1; i<imax-1; i++)
phi_new[k][i] = (phi[k-1][i]+ph[k][i-1]

+phi[k][i+1]+phi[k+1][i])*0.25;
/* pointer swapping */
temp_ptr = phi_new;
phi_new = phi;
phi = temp_ptr;

}

Note: both phi_new and phi are 2D arrays (row-major storage,
different from the Fortran code example used in the textbook!)



2D Jacobi: performance prediction

Balance analysis applied to 2D Jacobi:

4 floating-point operations per (k, i) per it iteration
1 store to memory per (k, i) per it iteration
How many loads from memory per (k , i) per it iteration?
(It depends on the cache size.)



2D Jacobi: performance prediction (cont’d)

Suppose the (last-level) cache is very small, that is, not enough to
even store one row of phi. Then, memory load traffic needed for
computing phi_new[k][i] is as follows:

The phi[k-1][i] value has to be loaded from memory again
(although it was loaded from memory twice already);
The phi[k][i-1] value is guaranteed to be already in cache
(it was recently loaded again from memory for computing
phi_new[k][i-2]);
The phi[k][i+1] has to be loaded again from memory for
computing phi_new[k][i] (and will be immediately reused
for computing phi_new[k][i+2]);
The phi[k+1][i] value has to be loaded from memory (and
it will be evicted from the cache before needed again);

Therefore, 3 memory loads per (k , i) → Bc =
3 loads+1 store

4 FPs



2D Jacobi: performance prediction (cont’d)

Suppose the cache can store at least two rows of phi, but not
enough to store the entire array phi. Then, memory load traffic
needed for computing phi_new[k][i] is as follows:

The phi[k-1][i] value is still in cache (it was first loaded
from memory for computing phi_new[k-2][i]);
The phi[k][i-1] value is still in cache;
The phi[k][i+1] value is also still in cache;
The phi[k+1][i] value has to be loaded from memory (and
it will be reused during computation on rows k+1 and k+2);

In effect, 1 memory load per (k , i) → Bc =
1 load+1 store

4 FPs



The case of 2 rows fit in cache



Access optimization for algorithm class O(N)/O(N)

Algorithm class O(N)/O(N)

1D loops (N: loop length)
1D arrays (N: array length)

Normally not much room for data access optimization, but loop
fusion can sometimes help.



Example of loop fusion

Original code: two loops after each other:

for (i=0; i<N; i++) {
A[i] = B[i] + C[i];

}

for (i=0; i<N; i++) {
Z[i] = B[i] + E[i];

}

Number of floating-point operations: 2N
Number of memory loads & stores: 4N + 2N

Code balance: Bc =
6
2 , can we improve?



Example of loop fusion (cont’d)

Loop fusion:

for (i=0; i<N; i++) {
A[i] = B[i] + C[i];
Z[i] = B[i] + E[i];

}

Now each B[i ] value is only loaded once instead of twice!
New code balance: Bc =

5
2

Loop fusion will also reduce looping overhead
Beware of the limited register resources: The code body of
each iteration shouldn’t be too large. (Otherwise, register
spilling can lead to performance degradation.)



Access optimization for algorithm class O(N2)/O(N2)

Algorithm class O(N2)/O(N2)

Two-level loop nests (N: loop length on each level)
Number of floating-point operations: O(N2)

Number of memory loads & stores: O(N2)

There is more room for data access optimization (than the class of
O(N)/O(N))



Example of data access optimization for O(N2)/O(N2)

Dense matrix-vector multiply

for (i=0; i<N; i++) {
double tmp = C[i];
for (j=0; j<N; j++)

tmp += A[i][j]*B[j];
C[i] = tmp;

}

Number of FP: 2N2

Number of loads & stores: N2 for 2D array A, 2N for 1D array
C
But, how many loads are associated with 1D array B?

Small cache → array B is loaded N times → N2 memory loads
Large cache → array B is loaded only once → N memory loads



Illustration of array B being loaded N times



Loop unrolling
m-way unroll and jam:

for (i=0; i<N; i+=m) {
for (j=0; j<N; j++) {

C[i+0] += A[i+0][j]*B[j];
C[i+1] += A[i+1][j]*B[j];
// ...
C[i+m-1] += A[i+m-1][j]*B[j];

}
}
// remainder code in case (N%m)>0 ....

m-fold reuse of each B[j] from register
Total number of memory loads and stores: N2 + N2/m + 2N
(for small cache size)
Size of m shouldn’t be too large, to avoid too high register
pressure



Illustration of the effect of unrolling



Another O(N2)/O(N2) algorithm: matrix transpose

A = BT

for (j=0; j<N; j++)
for (i=0; i<N; i++)

A[j][i] = B[i][j];

Both A and B are assumed to be 2D arrays with row-major storage.
(Note: The matrix-transpose example in the textbook,
Section 3.4, is programmed in Fortran and assumes
column-major storage!)

Very large jumps in memory associated with loading B[i][j] →
very bad cache line utilization.



Loop unrolling applied to matrix transpose

for (j=0; j<N; j+=m)
for (i=0; i<N; i++) {

A[j+0][i] = B[i][j+0];
A[j+1][i] = B[i][j+1];
// ....
A[j+m-1][i] = B[i][j+m-1];

}



Illustration

B A



Loop blocking + unrolling

for (jj=0; jj<N; jj+=b) {
jstart = jj; jstop = jj+b-1;
for (ii=0; ii<N; ii+=b) {

istart = ii; istop = ii+b-1;

for (j=jstart; j<=jstop; j+=m)
for (i=istart; i<=istop; i++) {

A[j+0][i] = B[i][j+0];
A[j+1][i] = B[i][j+1];
// ....
A[j+m-1][i] = B[i][j+m-1];

}
}

}



Illustration

B A



Access optimization for algorithm class O(N2)/O(N)

Example:

double sum = 0.;

for (i=0; i<N; i++) {
for (j=0; j<N; j++)

sum = sum + foo(A[i],B[j])
}

Array B has the risk of being loaded N times (when N is very
large)
Total number of memory loads: N + N2 (first part for array A,
second part for array B)



Applying loop blocking

double sum = 0.;

for (jj=0; jj<N; jj+=b) {
jstart = jj; jstop = jj+b-1;

for (i=0; i<N; i++) {
for (j=jstart; j<=jstop; j++)

sum = sum + foo(A[i],B[j])
}

}

Appropriate choice of b will allow array B to be loaded from
memory only once.
Array A will now be loaded N/b times (instead of only once).
Total number of memory loads: N2/b + N


