
IN3200/IN4200: Chapter 4
Parallel computers

Textbook: Hager & Wellein, Introduction to High Performance Computing for Scientists and
Engineers



Objectives

An introduction to the fundamental variants of parallel
computers

The shared-memory type
The distributed-memory type

A glimpse at basic design rules and performance characteristics
for communication networks



What is parallel computing?

Parallel computing—using multiple “compute elements”
(processor cores) to solve a problem in a cooperative way.

All modern supercomputer architectures depend heavily on
parallelism—a large number of interconnected compute elements.



A “peek” into supercomputers through Top500

The Top500 list (https://www.top500.org/)

A list of the world’s 500 most powerful supercomputers
Ranking by the measured performance of the LINPACK
benchmark

Solve a dense system of linear equations (the system size freely
adjustable)
Metric: number of floating-point operations executed per
second
Mostly reflect the floating-point capability of a supercomputer
Relevance of LINPACK is debatable

The list is updated twice a year



History of Top500



Top supercomputers of today (November 2021)



Some of the previous Top1 systems



Taxonomy of parallel computing paradigms

Dominating concepts:

SIMD (Single Instruction, Multiple Data)—A single
instruction stream, either on a single processor (core) or on
multiple computing elements, provides parallelism by operating
on multiple data streams concurrently. (Hardware examples:
vector processors, SIMD-capable modern superscalar
microprocessors and GPUs.)
MIMD (Multiple Instruction, Multiple Data)—Multiple
instructions streams on multiple processor (cores) operate on
different data items concurrently. (Hardware examples:
shared-memory and distributed-memory parallel computers.)

The focus of this chapter is on multiprocessor MIMD parallelism.



Shared-memory computers

A shared-memory parallel computer has a number of CPUs (cores)
that work on a shared physical address space.

Two varieties:

Uniform Memory Access (UMA) systems have a “flat” memory
model: latency and bandwidth are the same for all processors
and all memory locations. (Typically, single multicore
processor chips are “UMA machines”.)
Cache-coherent Nonuniform Memory Access (ccNUMA)
systems have a physically distributed memory that is logically
shared. The aggregated memory appears as one single address
space. Memory access performance depends on the which
CPU (core) accesses which parts of memory (“local”
vs. ”remote” memory access).



Caches are not (completely) shared

A shared-memory system, no matter UMA or ccNUMA, has
multiple CPU cores.

Although there is a single address space (shared memory), there are
private caches, or partially shared caches, for the different CPU
cores.

Therefore, copies of the same cache line may reside in several local
caches.



Cache coherence

Problematic situations when the same cache line resides in several
caches:

If the cache line in one of the caches is modified, the other
caches’ contents are outdated (thus invalid).
If different parts of the same cache line are modified by
different processors in their local caches → no one has the
correct cache line anymore.

Cache coherence protocols (supported in hardware) guarantee
consistency between cached data and data in the shared memory at
all times.



Example of UMA

Dual-socket Xeon Clovertown CPUs



ccNUMA for scalable memory bandwidth

A locality domain (LD) is a set of processor cores together
with locally connected memory. This “local” memory can be
accessed by the set of processor cores in the most efficient
way, without resorting to a network of any kind.
Each LD is a UMA building block.
Multiple LDs are linked via a coherent interconnect, which can
mediate cache-coherent memory accesses. (This mechanism is
transparent for the programmer.)
The whole ccNUMA system has a shared address space
(memory), runs a single OS instance.



Example of ccNUMA



Penalty for non-local transfers

The locality problem: Non-local memory transfers (between LDs)
are more costly than local transfers (within a LD).

The contention problem: If two processors from different LDs
access memory in one LD, they will fight for the same memory
bandwidth.

Both problems can be “solved” (alleviated) by carefully observing
the data access patterns of an application and restricting data
access of each processor (mostly) to its own LD, through proper
programming.



A “purely” distributed-memory computer

“A programmer’s view”: Each processor is connected to its exclusive
local memory (not shared by any other CPUs).

No such “purely” distributed-memory computer today.



Typical modern distributed-memory systems

A cluster of shared-memory “compute nodes”, interconnected via a
communication network.

Each node comprises at least one network interface (NI) that
mediates the connection to the communication network.

A serial process runs on each CPU (core). Between the nodes,
processes can communicate by means of the network.

The layout and speed of the network has a considerable impact on
application performance.



Hierarchical hybrid systems



Networks

There are different network technologies and topologies for
connecting the compute elements.

The following is a very brief overview of the topological and
performance aspects of different types of communication networks.



Basic performance characteristics of networks

Point-to-point communication (from one compute element to
another)
Bisection bandwith (a measure of the “whole” network)



Simple model of point-to-point communication

Time spent on transferring a message of size N [bytes] from a
“sender” process to a “receiver” process:

T = T` +
N

B

This is a simplified performance model:

T`: latency
B : maximum network point-to-point bandwith [bytes/sec]

T` and B are considered as constants, but in reality they can both
depend on N (message size), as well as on the locations of the two
processes.



Effective bandwidth

Due to latency T`, the actual data transfer rate will be lower than
B :

Beff =
N

T` +
N
B

The effective bandwidth Beff approaches B when N is large enough.



“Ping-pong” benchmark



“Ping-pong” benchmark (cont’d)

Pseudo code:

The same code is simultaneously run by two processes.



Example of “ping-pong” measurements

Beff is measured for different values of N; The values of T` and B
can be deduced by “fitting” the measurements with the theoretical
model.



Bisection bandwidth

How to quantify the “total” communication capacity of a network?

When all the compute elements are sending or receiving data at the
same time:

“competition” (even collision) may lead to that the aggregated
bandwidth, the sum of all effective bandwidths for all
point-to-point connections, is lower than the theoretical limit.

Bisection bandwidth of a network, Bb, is the sum of the
bandwidths of the minimal number of connections cut when
splitting the system into two equal-sized parts.



Illustration of bisection bandwidth



Different types of a communication network

Buses
Switched and fat-tree networks
Mesh networks



Buses

Can be used by exactly one communicating device at a time.
Easy to implement, featuring lowest latency at small
utilization.
The most important drawback is blocking.
Buses are susceptible for failures.



Switched and fat-tree networks

All communicating devices are organized into groups.
The devices in one group are connected to a switch.
Switches are connected with each other (as a fat-tree
hierarchy)
The “distance” between two communicating devices—number
of “hops”.



Mesh networks

In form of a multidimensional (hyper)cubes.
Each compute element is located at a Cartesian grid
intersection.
Connections can be wrapped around the boundaries, to form a
torus topology.


