IN3200/IN4200: Chapter 4

Parallel computers

Textbook: Hager & Wellein, Introduction to High Performance Computing for Scientists and
Engineers

@ An introduction to the fundamental variants of parallel
computers

o The shared-memory type
e The distributed-memory type
o A glimpse at basic design rules and performance characteristics
for communication networks

What is parallel computing?

Parallel computing—using multiple “compute elements’
(processor cores) to solve a problem in a cooperative way.

All modern supercomputer architectures depend heavily on
parallelism—a large number of interconnected compute elements.

A “peek” into supercomputers through Top500

The Top500 list (https://www.top500.org/)

@ A list of the world's 500 most powerful supercomputers

@ Ranking by the measured performance of the LINPACK
benchmark

o Solve a dense system of linear equations (the system size freely
adjustable)

o Metric: number of floating-point operations executed per
second

o Mostly reflect the floating-point capability of a supercomputer
o Relevance of LINPACK is debatable

@ The list is updated twice a year

History of Top500

Performance Development

10 EFlop/s
1 EFlop/s
100 PFlop/s
10 PFlop/s °) A
1 PFlop/s o® AAA -
100 TFlop/s o 0® 2

10 TFlop/s o® vy "

Performance
°
°
°

1 TFlop/s

100 GFlop/s n

10 GFlop/s]

1 GFlop/s "

100 MFlop/s
1995 2000 2005 2010 2015

Top supercomputers of today (N

Rank System

1 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C
2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan

2 Summit - IBM Power System AC922, IBM POWER9 22C
3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR
Infiniband, IBM

DOE/SC/Oak Ridge National Laboratory
United States

3 Sierra - IBM Power System AC922, IBM POWERY 22C 3.1GHz,
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM /
NVIDIA / Mellanox
DOE/NNSA/LLNL
United States

4 Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C
1.45GHz, Sunway, NRCPC
National Supercomputing Center in Wuxi
China

5 Selene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz,
NVIDIA A100, Mellanox HDR Infiniband, Nvidia
NVIDIA Corporation
United States

ember 2021)

Cores

7,630,848

2,414,592

1,572,480

10,649,600

555,520

Rmax
(TFlop/s)

442,010.0

148,600.0

94,640.0

93,014.6

63,460.0

Rpeak
(TFlop/s)

537,212.0

200,794.9

125,712.0

125,435.9

79.215.0

Power
(kW)

29,899

10,096

7,438

15,371

2,646

Some of the previous Topl systems

Summit: DOE/SC/Oak Ridge National Sunway TaihuLight: National
Laboratory Supercomputing Center in Wuxi
No.1in Jun 2018 No.1 from Jun 2016 until Nov 2017

Tianhe-2 (MilkyWay-2) : National University | Titan: Oak Ridge National Laboratory
of Defense Technology No.1in Nov 2012
No.1 from Jun 2013 until Nov 2015

Taxonomy of parallel computing paradigms

Dominating concepts:

e SIMD (Single Instruction, Multiple Data)—A single
instruction stream, either on a single processor (core) or on
multiple computing elements, provides parallelism by operating
on multiple data streams concurrently. (Hardware examples:
vector processors, SIMD-capable modern superscalar
microprocessors and GPUs.)

e MIMD (Multiple Instruction, Multiple Data)—Multiple
instructions streams on multiple processor (cores) operate on
different data items concurrently. (Hardware examples:
shared-memory and distributed-memory parallel computers.)

The focus of this chapter is on multiprocessor MIMD parallelism.

Shared-memory computers

A shared-memory parallel computer has a number of CPUs (cores)
that work on a shared physical address space.

Two varieties:

e Uniform Memory Access (UMA) systems have a “flat” memory
model: latency and bandwidth are the same for all processors
and all memory locations. (Typically, single multicore
processor chips are “UMA machines”.)

o Cache-coherent Nonuniform Memory Access (ccNUMA)
systems have a physically distributed memory that is logically
shared. The aggregated memory appears as one single address
space. Memory access performance depends on the which
CPU (core) accesses which parts of memory (“local”
vs. "remote” memory access).

Caches are not (completely) shared

A shared-memory system, no matter UMA or ccNUMA, has
multiple CPU cores.

Although there is a single address space (shared memory), there are
private caches, or partially shared caches, for the different CPU
cores.

Therefore, copies of the same cache line may reside in several local
caches.

Cache coherence

Problematic situations when the same cache line resides in several
caches:

@ If the cache line in one of the caches is modified, the other
caches’ contents are outdated (thus invalid).

o If different parts of the same cache line are modified by
different processors in their local caches — no one has the
correct cache line anymore.

Cache coherence protocols (supported in hardware) guarantee
consistency between cached data and data in the shared memory at
all times.

Example of UMA

.. Woodtrest ..
.. Clovertown ..

10.6 | GBs 10.6|GRs

el

Memory Bride

Controller

HAD 12

Dual-socket Xeon Clovertown CPUs

ccNUMA for scalable memory bandwidth

@ A locality domain (LD) is a set of processor cores together
with locally connected memory. This “local” memory can be
accessed by the set of processor cores in the most efficient
way, without resorting to a network of any kind.

e Each LD is a UMA building block.
o Multiple LDs are linked via a coherent interconnect, which can

mediate cache-coherent memory accesses. (This mechanism is
transparent for the programmer.)

@ The whole ccNUMA system has a shared address space
(memory), runs a single OS instance.

Example of ccNUMA

L1D
L2

Figure 4.5: A
ccNUMA system
with two locality
domains (one per
socket) and eight
cores.

Penalty for non-local transfers

The locality problem: Non-local memory transfers (between LDs)
are more costly than local transfers (within a LD).

The contention problem: If two processors from different LDs

access memory in one LD, they will fight for the same memory
bandwidth.

Both problems can be “solved” (alleviated) by carefully observing
the data access patterns of an application and restricting data
access of each processor (mostly) to its own LD, through proper
programming.

‘purely” distributed-memory computer

Figure 4.7: Simplified
programmer’s view, or
“programming model,”
of a distributed-memory
parallel computer: Se-
parate processes run on
processors (P), commu-
nicating via interfaces
(NI) over some network.
No process can access
another process’ memo-
ry (M) directly, although
processors may reside in
shared memory.

Communication network

“A programmer’s view'": Each processor is connected to its exclusive
local memory (not shared by any other CPUs).

No such “purely” distributed-memory computer today.

Typical modern distributed-memory systems

A cluster of shared-memory “compute nodes’, interconnected via a
communication network.

Each node comprises at least one network interface (NI) that
mediates the connection to the communication network.

A serial process runs on each CPU (core). Between the nodes,
processes can communicate by means of the network.

The layout and speed of the network has a considerable impact on
application performance.

Hierarchical hybrid systems

[Memory] [Mer:mry] [I;Ilenlmry] -[nl;n;mory J [Menl-lory] [Menllory] [Menllory] -[“n-llt;m;rry]

Communication network

Figure 4.8: Typical hybrid system with shared-memory nodes (ccNUMA type). Two-socket
building blocks represent the price vs. performance “sweet spot” and are thus found in many
commodity clusters.

There are different network technologies and topologies for
connecting the compute elements.

The following is a very brief overview of the topological and
performance aspects of different types of communication networks.

Basic performance characteristics of networks

@ Point-to-point communication (from one compute element to
another)

@ Bisection bandwith (a measure of the “whole” network)

Simple model of point-to-point communication

Time spent on transferring a message of size N [bytes] from a
“sender” process to a “receiver’ process:

N
T=Ti+—=
z+B

This is a simplified performance model:

o Ty latency

@ B: maximum network point-to-point bandwith [bytes/sec]

Ty and B are considered as constants, but in reality they can both
depend on N (message size), as well as on the locations of the two
processes.

Effective bandwidth

Due to latency Ty, the actual data transfer rate will be lower than

B:
N

Bag = —
¢ Tg-i-%

The effective bandwidth B.g approaches B when N is large enough.

“Ping-pong” benchmark

l Process 0 Process 1

Send
message

Figure 4.9: Timeline for a “Ping-

Send Pong” dat h bet
message ong” data exchange between
two processes. PingPong reports
the time it takes for a message of

length N bytes to travel from pro-
cess 0 to process 1 and back.

“Ping-pong" benchmark (cont'd)

Pseudo code:

1 myID = get_process_ID()

2> if(myID.eqg.0) then

3 targetID = 1

4 S = get_walltime()

5 call Send_message (buffer,N,targetID)

6 call Receive_message(buffer,N,targetlID)

7 E = get_walltime()

8 MBYTES = 2xN/(E-S)/1.d6 ! MBytes/sec rate

9 TIME = (E-S)/2x1.d6 ! transfer time in microsecs
10 ! for single message

11 else

1 targetID = 0

13 call Receive_message(buffer,N,targetID)

14 call Send_message(buffer,N,targetID)

15 endif

The same code is simultaneously run by two processes.

Example of “ping-pong” measurements

120 T T T T T T
r T T es "
481 g
100f _ P i
I E%M/././_
- []
o 80F £ 4 i
@ | %44 b 4
8 a2t 4
= 60 e 7
1 10 100 '
;._ N [bytes] i
2 4or ¢ | modelfit (T, = 76us,]
3 | B =111 MBytes/sec) {
20k ¢
Py i e measured (GE)
L) 1
o) R St * N, | E
1 1 1 121 1 1
10" 10* 10° 10" 10° 10°

N [Bytes]
Figure 4.10: Fit of the model for effective bandwidth (4.2) to data measured on a GigE net-

work. The fit cannot accurately reproduce the measured value of 7; (see text). Ny, is the
message length at which half of the saturation bandwidth is reached (dashed line).

Bt is measured for different values of N; The values of T, and B
can be deduced by “fitting” the measurements with the theoretical
model.

Bisection bandwidth

How to quantify the “total” communication capacity of a network?

When all the compute elements are sending or receiving data at the
same time:

@ “competition” (even collision) may lead to that the aggregated
bandwidth, the sum of all effective bandwidths for all
point-to-point connections, is lower than the theoretical limit.

Bisection bandwidth of a network, By, is the sum of the
bandwidths of the minimal number of connections cut when
splitting the system into two equal-sized parts.

[llustration of bisection bandwidth

i

%
Figure 4.12: The bisec-
tion bandwidth By, is the
sum of the bandwidths of
the minimal number of
connections cut (three in
this example) when di-
viding the system into
two equal parts.

N

Different types of a communication network

@ Buses
o Switched and fat-tree networks

@ Mesh networks

Buses

K Figure 4.13: A bus net-
/ work (shared medium).
Only one device can use
the bus at any time, and

// bisection bandwidth is
K independent of the num-
/ ber of nodes.

Can be used by exactly one communicating device at a time.

Easy to implement, featuring lowest latency at small
utilization.

The most important drawback is blocking.

Buses are susceptible for failures.

Switched and fat-tree networks

SWB | spine switches

SW 1 | | SW 2 SW3 | I SW 4 ‘Ieafswitches
otob OoLo | Gobd Good

Figure 4.15: A fully nonblocking full-bandwidth fat-tree network with two switch layers. The
switches connected to the actual compute elements are called leaf switches, whereas the upper
layers form the spines of the hierarchy.

@ All communicating devices are organized into groups.
@ The devices in one group are connected to a switch.

@ Switches are connected with each other (as a fat-tree
hierarchy)

@ The “distance” between two communicating devices—number
of “hops”.

Mesh networks

Figure 4.18: A two-dimensional (square)
torus network. Bisection bandwidth scales
like /N in this case.

e
e
T
pararars

@ In form of a multidimensional (hyper)cubes.

@ Each compute element is located at a Cartesian grid
intersection.

o Connections can be wrapped around the boundaries, to form a
torus topology.

