
IN3200/IN4200: Chapter 5
Basics of parallelization

Sections 5.3.5, 5.3.6, 5.3.7, 5.3.8 are not required

Textbook: Hager & Wellein, Introduction to High Performance Computing for Scientists and
Engineers



Objectives

High-performance computing = efficient serial computing +
effective parallel processing → needs parallel programming

But before actually engaging in parallel programming, it is vital to
know some fundamental things in parallelization:

The most common strategies for parallelization
Simple theoretical insights into the factors that can hamper
parallel performance (to be covered in part 2)



Why parallelize?

We want to solve the problems faster, but the speed of a
single CPU core has “saturated”.
We want to solve larger problems, but the main memory
available on a single system is not large enough.

So, we need to identify parallelism in a given computational
problem, so that parallel programming can produce a parallel
implementation that can efficiently use many processor cores, on a
shared- or distributed-memory system.



Identifying parallelism

The first step is to identify the parallelism inherent in the algorithm
at hand—how can multiple compute elements collaborate to solve
the computational problem?

Different variants of parallelism induce different methods of
parallelization.



Data parallelism

Most problems in scientific computing involve processing of large
quantities of data stored on a computer.

If this can be performed in parallel by multiple processors
concurrently working on different parts of the data—data
parallelism.

This is the dominant parallelization concept in scientific computing,
also goes under the name SPMD (single program multiple data).



Example: medium-grained loop parallelism

Processing of array data by loops or loop nests is a central
component in most scientific codes.

When computations performed on the individual array elements are
independent of each other—typical candidates for parallel execution
by multiple “workers” with help of shared memory. (Also possible
on distributed-memory systems after appropriate data partitioning.)



More examples of data parallelism (matrix-matrix
multiplication)

Multiplying two matrices A and B to yield matrix C . The output
matrix C can for example be partitioned into four blocks (where
each block is a sub-matrix):

(
A1,1 A1,2
A2,1 A2,2

)
×
(

B1,1 B1,2
B2,1 B2,2

)
=

(
C1,1 C1,2
C2,1 C2,2

)

Process 1: C1,1 = A1,1B1,1 + A1,2B2,1

Process 2: C1,2 = A1,1B1,2 + A1,2B2,2

Process 3: C2,1 = A2,1B1,1 + A2,2B2,1

Process 4: C2,2 = A2,1B1,2 + A2,2B2,2



More examples of data parallelism (counting occurrences)

Counting the occurrences of given itemsets in a database of
transactions. For example, the output (itemset frequencies) can be
partitioned across processes.
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A. Grama, A. Gupta, G. Karypis, and V. Kumar: “Introduction to Parallel Computing”, Addison Wesley, 2003



More examples of data parallelism (counting occurrences)

We have the following observations:

If the database is shared (on a shared-memory system) or
replicated across the processes (on a distributed-memory
system), each process can be independently accomplished (no
need for communication).
If the database is partitioned across processes as well (for best
use of distributed memory), each process can first compute
partial counts. These counts then have to be aggregated (by
communication).



More examples of data parallelism (counting occurrences)

Input Data Partitioning: For the database counting example, we
can choose to partition the input (i.e., the transaction set).
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The two partial counting results of itemset frequency need to be
aggregated.

A. Grama, A. Gupta, G. Karypis, and V. Kumar: “Introduction to Parallel Computing”, Addison Wesley, 2003



More examples of data parallelism (counting occurrences)
Input and Output Data Partitioning (aggregation needed
afterwards):
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Example: Coarse-grained parallelism by domain
decomposition

In case of a computational domain represented as a grid, a
straightforward way to distribute the computation among “workers”
is to assign a part of the grid to each worker—domain
decomposition.

Works on both shared-memory and distributed-memory computers.

https://fun3d.larc.nasa.gov/example-55.html



Domain decomposition & distributed memory

If domain decomposition is to be implemented for distributed
memory, grid & data are explicitly partitioned. Updating one
subdomain’s boundary points requires data from one or more
adjacent subdomains.

Explicit communication is thus needed, together with halo or ghost
layers in the data structure.



More about domain decomposition

Unless the computational grid is regular, domain decomposition can
be a non-trivial task:

Load balance—all “workers” get roughly the same amount of
computation;
Communication overhead—must be kept low;



Impact of decomposition on communication overhead



Example of general decomposition

https://nutscfd.wordpress.com/2017/03/06/mesh-partitioning-using-parmetis/



Functional parallelism

When the solution of a “big” problem can be split into disparate
subtasks, which work together by data exchange and
synchronization. The subtasks execute completely different code on
different data items, so functional parallelism becomes an option.

Functional parallelism is also called MPMD (multiple program
multiple data). Each subtask may contain data parallelism and be
further parallelized by SPMD.

If different parts of the “big” problem have different
performance properties and hardware requirements,
bottlenecks and load imbalance can easily arise.
Overlapping subtasks—in the “design” of functional
parallelism—can give performance benefits.



Example: master-worker scheme

Reserving one “master” compute element for administrating the
other compute elements (as “workers”).

From a pool of subtasks, the master dynamically assigns the
workers with computational work.
The master is also responsible for collecting results from the
workers.

A drawback of the master-worker scheme is the potential
communication and performance bottleneck that may appear with
a single master that administrates a large number of workers.



Example: functional decomposition

Multiphysics simulations are possible candidates for parallelization
by functional decomposition (combined with data parallelism).

For instance, the air flow around a racing car can be simulated
using a parallel CFD (computational fluid dynamics) code. On the
other hand, a parallel finite element simulation can compute the
reaction of the structure of the car to the air flow. The two parts
are coupled using an appropriate communication layer.


