
IN3200/IN4200: More about parallelization

Chapter 5 in textbook: Hager & Wellein, Introduction to High Performance Computing for

Scientists and Engineers

Plus examples from A. Grama, A. Gupta, G. Karypis, and V. Kumar: “Introduction to Parallel

Computing”, Addison Wesley, 2003

Content

Simple theoretical insights into the factors that can hamper
parallel performance
More examples of identifying parallelism
Simple design of parallel algorithms

Parallel scalability

The ideal goal: If a problem takes time T to be solved by one
worker, we expect the solution time by using N identical workers to
be T/N—a perfect speedup of N.

However, perfect speedup is often not achievable in reality, why?

Factors that limit parallel execution

Reasons for non-perfect speedup:

Not all workers might execute their tasks equally fast, because
the problem was not (or could not be) partitioned into equal
pieces—load imbalance;
There might be shared resources which can only used by one
worker at a time—serialization;
New tasks may arise due to parallelization, such as
communication between workers—overhead.

Example of load imbalance

Example of serialization

Example of communication overhead

Scalability metrics

How well can a computational problem be parallelized?

Scalability metrics help to answer the following questions:

How much faster can a given problem be solved with N
workers instead of one?
How much more work can be done with N workers instead of
one?
What impact do the communication requirements have on
performance and scalability?
What fraction of the resources is actually used productively?

Strong and weak scaling

Starting point: The overall problem size (“amount of work”) is
normalized as

s + p = 1

where s is the serial, non-parallelizable fraction, p is the perfectly
parallelizable fraction.

We can now define strong scaling and weak scaling, and study the
relationship between single-worker serial runtime and multi-worker
parallel runtime.

Strong scaling

Single-worker (serial) normalized runtime for a fixed-size problem:

T s
f = s + p

Solving the same problem using N workers will require a runtime of

T p
f = s +

p

N

This is called strong scaling, because the total amount of work
stays constant no matter how many workers are used.

Here, the goal of parallelization is minimization of time-to-solution
for a given problem.

Weak scaling

For weak scaling, the goal is to solve an increasingly larger
problem with more workers N.

More specifically, the total amount of work is scaled with some
power of N

s + pNα (α is a positive parameter)

which means that single-worker runtime for the variable-sized
problem would have been T s

v = s + pNα.

Using N workers, the parallel runtime is

T p
v = s + pNα−1

Here, we have also assumed that s doesn’t grow with N.

The most typical choice is α = 1, then T s
v = s + pN and

T p
v = s + p.

Simple scalability laws

How to calculate speedup?

application speedup =
serial runtime
parallel runtime

or equivalently

application speedup =
parallel performance
serial performance

where “performance” is defined as “work over time”.

Amdahl’s law

For a fixed problem size s + p = 1, the application speedup
(“scalability”) is

Sf =
T s

f
T p

f
=

s + p

s + p
N

=
1

s + 1−s
N

This is “Amdahl’s law”—maximum speedup is 1/s when N →∞.

Gustafson’s law

The problem size is scaled with the number of workers N.

Recall that for α = 1 we have T s
v = s + pN and T p

v = s + p.
Therefore the application speedup is

Sv =
T s

v
T p

v
=

s + pN

s + p
=

s + (1− s)N

1
= s + (1− s)N

This is “Gustafson’s law”—speedup can be arbitrarily large when
N →∞.

Parallel efficiency

How effectively is the resource used by parallel program?

Parallel efficiency is defined as

ε =
speedup

N

This will be a value between 0 and 100%.

Negative impact of load imbalance

Example: dense matrix-vector multiply

Dense matrix-vector multiply

y = Ab

for (i=0; i<N; i++) {
double tmp = 0.;
for (j=0; j<N; j++)

tmp += A[i][j]*b[j];
y[i] = tmp;

}

Parallelization

n10

A yb

...

Task 4

Task 2

Task 3

Task 1

Decomposition of the outer loop (index i) into P chunks, each as
the computational task for a processor core. All the tasks are
completely independent.

Work decomposition

Let N denote the number of entries in vector y (same as the
number of rows in matrix A). If N is divisible by the number of
processor cores P , then work decomposition will be perfectly even.

For example: processor core number k (0 ≤ k < P) can be
responsible for computing the following entries of vector y:

y[k*chunk_size],
y[k*chunk_size+1],
. . .
y[(k+1)*chunk_size-1]

where chunk_size=N/P

Danger for severe load imbalance

What if N is not divisible by P?

Integer division chunk_size=N/P will result in

chunk_size = bN
P
c = N −modulo(N,P)

P

That can easily lead to that P − 1 processor cores compute each
chunk_size entries of vector y, whereas one processor core
computes modulo(N,P) entries extra.

An extreme case of load imbalance arises when N = 2P − 1. It will
mean that the amount of work for the “heavy-load” processor core
is P times of the other processor cores!

Remedy for load balance

The following work decomposition will guarantee that the maximum
difference between “heavy-load” and “light-load” tasks is at most 1.

Processor core number k computes

y[start_k],
y[start_k+1],
. . .
y[stop_k-1]

where start_k=k*N/P and stop_k=(k+1)*N/P (integer divisions
are used to compute both values).

Example: summing an array of values

sum=0.;
for (i=0; i<N; i++)

sum += y[i];

Basic strategy of parallelization:

Divide the entries of array y into as equal-sized chunks as
possible

start_k=k*N/P and stop_k=(k+1)*N/P

Each processor core independently computes a partial sum as
y[start_k]+ y[start_k+1]+. . .+y[stop_k-1]

When all the P partial sums are computed, they are added up
to produce the correct value of sum

How to sum up P values from P processor cores?

Approach 1: Pick a “master” processor core, and let the master add
the P values together.

Downside of this approach: The master core can become a
bottleneck if P is large.

Approach 2: reverse recursive decomposition

The “bottom” tasks represent individual partial sums on the
processor cores, the other tasks are pair-wise additions until sum is
computed at the “top”.

Another example of reverse recursive decomposition

Suppose we want to find the minimum value in the set
{4, 9, 1, 7, 8, 11, 2, 12}.

min(1,7) min(8,11)min(4,9) min(2,12)

min(1,2)

min(4,1) min(8,2)

Example: Database Query Processing

Consider the execution of the query:

MODEL = “CIVIC” AND YEAR = 2001 AND
(COLOR = “GREEN” OR COLOR = “WHITE)

on the following database:

ID# Model Year Color Dealer Price
4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000

Decomposition into tasks

The execution of the query can be divided into tasks. Each task
can be thought of as generating an intermediate table of entries
that satisfy a particular clause.

Civic AND 2001 AND (White OR Green)

White OR Green

2001Civic

Civic AND 2001

White Green

6734

ID# Model Year Color

6734

4395

ID# Model Year

4395

3845

5342

6734

7623

ID# Year

4523

6734

4395

7352

ID# Model

Civic

Civic

Civic

Civic

2001

2001

2001

2001

2001

Civic

Civic

2001

2001

3476

6734

ColorID# 7623

9834

5342

8354

ID# Color

3476

7623

9834

6734

5342

8354

ID# Color

Civic 2001 White

Green

Green

White

Green

Green

White

White

White

Green

Green

Green

Green

Decomposing the given query into several tasks. Edges denote that
the output of one task is needed to accomplish the next.

Another decomposition

2001 AND (White or Green)

Green

Civic AND 2001 AND (White OR Green)

Civic 2001 White

White OR Green

7623

6734 Civic White

ID# Model Year Color

2001

3476

6734

White

White

ColorID#

3476

7623

9834

6734

5342

8354

8354

Green

Green

White

Green

Green

White

ID# Color

Green

Green

4395

3845

5342

6734

7623

ID# Year

2001

2001

2001

2001

2001

20017623 Green

20016734 White

Green

ID# YearColor

2001Green5342

Green

ID# Color

4523

6734

4395

7352

Civic

Civic

Civic

Civic

ID# Model

5342

9834

Different task decompositions may lead to significant differences
with respect to their eventual parallel performance.

Task dependency graph & critical path

Task dependency graph: A directed path in the task dependency
graph represents a sequence of tasks that must be processed one
after the other.

The length of the longest path in a task dependency graph is called
the critical path length. It also gives the minimum time needed by
parallel execution.

10 10 10

Task 7

10

6

7

10 10 10 10

8

9 6

11

(a) (b)

Task 1Task 1Task 2Task 3Task 4

Task 5Task 6

Task 7

Task 2Task 3Task 4

Task 5

Task 6

