Static techniques

Software Testing: IN3240 / IN4240

Summary

Static techniques and the test process

What is static analysis / testing?

Review types

Varying degree of formality

Static analysis by tools

Typical defects detected

Informal review / Walkthrough / Technical review / Inspection

Part I: Close-ended questions

Which of the following artefacts can be examined by using review techniques?

- a. Software code
- b. Requirements specification
- c. Test designs
- d. All of the above

Question 1: Clues

Which of the following artefacts can be examined by using review techniques?

Review process

Process / Meeting -> Examine software products

From very formal (structured + regulated) to informal (no written

instructions)

Objectives

Discussion / Decision-making

Find defects \rightarrow Defects detected earlier are usually cheaper to remove Gain understanding -> Find omissions in requirements / specifications

Question 1: Clues

Which of the following artefacts can be examined by using review techniques?

Any software product can be reviewed

Requirements specification

Design specification

Source code

Test plans / specifications / cases / scripts

Product manuals / User guides

Web pages

A static analysis tool gives quality information about the code without executing it.

a. True b. False

Question 2: Clues

A static analysis tool gives quality information about the code without executing it.

Static analysis

Examination of code without executing it

E.g. through compiling code

Understanding code structures / dependencies

May help to ensure code adheres to industry standards

Tools for static analysis

Manual examination of work product

Automated tools to assist in examination

Which is not a type of review?

- a. Walkthrough
- b. Inspection
- c. Informal review
- d. Management approval

Question 3: Cues

Which is not a type of review?

Types of reviews

Informal review

Inexpensive way to get some benefit

Walkthrough

Learning / Gaining understanding / Defect finding

Technical review

Discussion / Decision-making / Defect-finding / Solving technical problems / Check conformance

Inspection

Finding defects

Which statement about reviews is true?

- a. Inspections are led by a facilitator or moderator, whereas technical reviews are not necessarily.
- b. Technical reviews are led by a trained leader, inspections are not
- c. In a walkthrough, the author does not attend
- thoroughly trained

d. Participants for a walkthrough always need to be

Question 4: Cues

Which statement about reviews is true? Reviews vary in degree of formality

Defines ...

Content and focus area of review meeting

Roles present during review

Responsibilities of each participant

Level of documentation / effort based on formality

Informal review Walkthrou

Inspection

Question 4: Clues

Which statement about reviews is true? Informal review Pair programming Technical lead \rightarrow Reviews the design / code No formal process Documentation optional Walkthrough Led by author **Open-ended** sessions \rightarrow Scenarios / Dry runs / Peer group In practice: Varies from very informal to very formal

Question 4: Clues

Which statement about reviews is true? Technical review

- Peer review without management participation *Ideally* led by a facilitator or moderator Documented → Defined defect-detection process Peers and technical experts present during review meeting
- Requires pre-meeting preparations
- Optional use of
 - Checklists / Review reports / List of findings
 - Management may participate

Question 4: Clues

Which statement about reviews is true? Inspection

Peer examination Always led by facilitator or moderator (not author) Formal process - Checklists / Rules / Entry and exit criteria Includes metrics Pre-meeting preparations required Defined roles Produce and follows inspection report / list of findings Formal follow-up process

What is the main difference between a walkthrough and an inspection?

- a. An inspection is led by authors, whilst a review is led by a trained facilitator or moderator
- b. An inspection has a trained leader, whilst a walkthrough has no leader.
- c. Authors are not present during inspections, whilst they are during walkthroughs
- d. A walkthrough is led by the author, whilst an inspection is led by a facilitator or moderator

Question 5: Clues

Which of the following is true regarding the process of fixing emergency changes?

Walkthrough reviews

Objectives: Gain understanding / Find defects

Led by author

Open-ended sessions

Inspection reviews

Objectives: Find defects

Led by trained facilitator or moderator

Formal process with follow-up meeting

What statement about static analysis is true?

- difficult to find with dynamic testing
- b. Compiling is not a form of static analysis
- c. When properly performed, static analysis makes functional testing redundant
- d. Static analysis finds all faults

a. With static analysis, defects can be found that are

Question 6: Clues

What statement about static analysis is true? Static analysis Testing code without executing it E.g. Compiling code Checks code / requirement and design documents Objective: Improve quality / Prevent defects / Verify software product Verification process \rightarrow Have we built the correct software? Dynamic testing Testing done by executing source code Validation process \rightarrow Have we built the software correctly?

Which of the following statements about early test design are true and which are false?

- Defects found during early test design are more expensive to fix ٦.
- Early test design can find defects 2.
- Early test design can cause changes to the requirements 3.
- Early test design takes more effort 4.

a.1 and 3 are true. 2 and 4 are false. b.2 is true. 1, 3 and 4 are false. c.2 and 3 are true. 1 and 4 are false. d.2, 3 and 4 are true. 1 is false.

Question 7: Clues

design are true and which are false? Early test design **Preventive** action \rightarrow **Avoid** defects being introduced Find defects Less expensive to fix defects during earlier stages \rightarrow Less to fix Less effort involved \rightarrow Less to do Reveals faults in requirements Can change the requirements specification

Which of the following statements about early test

Static code analysis typically identifies all but one of the following problems. Which is it?

- a. Unreachable code
- b. Undeclared variables
- c. Faults in the requirements
- d. Redundant code

Question 8: Clues

the following problems. Which is it? Static code analysis

Examination of code without executing it

Finds defects rather than failures

Typical defects discovered

Undefined / unused variables

Inconsistent interface between modules and components

Unreachable code / Deadlocks / Duplicates

Programming standard violations / Syntax violations

Static code analysis typically identifies all but one of

The _____ of a review process is related to the following factors:

- The maturity of the development process
- Any legal requirements for the software product/project
- The need for an audit trail

Question 9: Clues

The _____ of a review process is related to the following factors: **Review** process Different types of reviews Informal review / Walkthrough / Technical review / Inspection Varying degree of formality What is the main objective of a specific review (meeting)? How far we have come (maturity) Jurisprudence and other regulations **Documentation** and audit trails needed?

- Objectives: Find defects / Gain understanding / Decision-making

Pair the following review activities with their description:

1. Planning	A. The facilitator dis reviewed.
2. Initiate review	B. Each participant defects found
3. Individual preparation	C. The author of the in the review meet
4. Review meeting	D. A facilitator select assigns roles in the
5. Rework	E. The facilitator ch
6. Follow-up	F. Meeting in which The author takes n

- stributes to all the participants the doc to be
- reads their part of the document and notes the
- e reviewed doc fixes the defects found and reported Ing
- cts who is going to attend the review activity and review process
- ecks if the defects have been fixed
- h each participant lists the defects they have found. otes. The facilitator moderates the discussion.

Part II: Exercises and Open-ended questions

Exercise: Video

Watch video on "Clean Code"

By Robert Cecil Martin (Uncle Bob)

https://www.youtube.com/watch?v=7EmboKQH8IM

Why do you think it is important to have clean code?

Why is it important to keep it clean?

Do you think it is good to impose coding conventions to a team? For example: Naming conventions, tabs, complexity of methods, interfaces, API, etc.

Importance of Clean Code

- Clean Code: Aspects to consider
 - Rigidity / Dependencies
 - Coupling
 - Maintainability / Portability
 - Robustness
- Is clean code more important than efficient code? Back in the day \rightarrow Important to write efficient code Maximise functionality packed into each kilobyte of storage How tightly it compiled / How much RAM it used
 - Perhaps no longer such marginal restrictions?

Coding Conventions

Guidelines for specific programming language Improve software quality Readability / Maintainability of source code Limit complexity Recommendations for ... Programming style Such as comment conventions / Indentation / Line length / Naming conventions Practices and methods Not enforced by compilers!

