
Exploratory Testing

Software Testing: IN3240 / IN4240

project title

Part I: Testing an application

project title

Your Horoscope
You are now going to test a horoscope program that’s sets your horoscope based on your date of birth.

 Click here to open and run the program.

https://www.uio.no/studier/emner/matnat/ifi/IN3240/v24/ukeoppgaver/yourhoroscope.jar

project title

Your Horoscope

Unfortunately, there are at least
three bugs in the program that
you shall try to detect. You do not
have access to the test basis,
except the zodiac signs defined
in this table.

Clues:

Use Equivalence partitions and
boundary value analysis!

project title

Your Horoscope

The equivalence partitioning can be done in
different ways on the same test object.
Some of them will contain boundary values,
others not. The following example from the
textbook page 118 illustrates this:

project title

Your Horoscope
In which ways can you apply equivalence partitioning to the
input of the horoscope program?

For each way, specify
• the equivalence partitions, both valid and invalid
• any boundary values

Hint: You don't need to list every equivalence partition and its boundary values. It is
sufficient to describe them uniquely as sets, intervals or in words.

project title

Part II: Close-ended questions

project title

Question 1

Which of the following are good questions to ask oneself, in
order to build quality in a software system?

I. Is the customer the same as the user?
II.How much can my customers afford to pay for my product?
III.Can I reduce the user roles even more, to reach a minimum number of user

profiles?

a. I, II
b. I, III
c. II, III
d. I, II, III

project title

Question 2

Which of the following factors have most influence in
determining which testing process to apply?

a. The tools used to report and fix bugs.

b. Product interfaces, project size.

c. The team’s attitude in communicating software faults and
failures.

d. Regular bug triage meetings.

project title

Question 3

Which of the following statement can, according to Cem
Kaner, be used to define the term “Quality” of software?

a. The quality of software is to make a software bug free.
b. Quality software means that writing code to assert that other

code returns some “correct” results.
c. Quality is value to some person(s).
d. Quality is an investigation of code, system, people and the

relationship between them.

project title

Question 4
Which of the following will be verified by testers, during
the exploratory testing sessions?

I. Program features
II. Program data
III. Program interoperability
IV. Project management
V. Step-by-step test scenarios

a. V
b. I, II, III
c. III, IV
d. I, II, III, IV, V

project title

Question 5

Does software testing depend on the size of the
software being tested?

YES / NO

project title

Question 6

Does software testing depend on the type of product
being developed? (ex: experimental vs. life-critical vs.
regulated software)

YES / NO

project title

Question 7

____________ refers to experience-based techniques for
problem solving, learning, and discovery that give a solution
which is not guaranteed to be optimal.

project title

Question 8

Pair the following triggers for heuristics and their possible
underlying issues:

project titlePart III: Exercises and
Open-ended questions

project title

Exercise 1

Video on what means exploratory testing:
https://www.youtube.com/watch?v=I-ItEKt_N_s

https://www.youtube.com/watch?v=I-ItEKt_N_s

Unit testing

Software Testing: IN3240 / IN4240

project title

Unit Testing – component testing

Unit testing, also known as Component testing verifies the

modules of the software (e.g. classes, functions/methods,

modules etc.) that are separately testable.

project title

Unit Testing – component testing
The developer writes code to test modules in the software under
test.

Unit test framework support the developer.

Unit testing should be done in isolation from the rest of the
system.

Stubs and drivers are used to replace the missing software and
simulate the interface between the software components.

project title

Unit Testing – component testing
A stub is called from the software component to be tested.

A driver calls a component to be tested.

Test cases are derived from work products such as the software
design or the data model

Unit tests and test suites for Java programs can be developed in
an integrated development environment, e.g. Eclipse and Netbeans.

project title

Exercise: Unit Testing

The Java program : PerfectNumbers.java finds perfect
numbers up to a given limit.

• Use Eclipse to develop JUnit test cases for the three
methods in the file PerfectNumbers.java.

• Create a JUnit test suite of all the test cases.

(To run the program, you must add the file
PerfectTest.java.)

http://www.cs.hioa.no/~evav/inf3121-4121/PerfectNumber/PerfectNumbers.java

project title

Exercise: Unit Testing

For an added challenge you can try to make the program
yourself!

(If you want to run the program, you must add the file PerfectTest.java.)

If you need a Unit Test guide, see
https://www.youtube.com/watch?v=v2F49zLLj-8

http://www.cs.hioa.no/~evav/inf3121-4121/PerfectNumber/PerfectTest.java
https://www.youtube.com/watch?v=v2F49zLLj-8

project title

Exercise: Unit Testing

What is a perfect number?
An integer equal to the sum of all its real factors, including one

(1)

 Real factor means a factor less than the number itself

Examples

project title

Exercise: Unit Testing

PerfectNumbers.java
Calculates perfect numbers

perfect(int number): boolean

 Is the given number perfect?

factorSum(int number): String

 Calculate factor sum of number

findPerfectNumbers(int limit): String

 Find perfect numbers given limit

project title

Exercise 2: Unit Testing

Testing perfect(int number)
What to test?

Confirm perfect number is perfect

Chosen number: 6

Variables

 result → Holds the returned value

 expected → Set to true

Assert

 Check that the two values match

Testing perfect(int number)
What to test?

Confirm non-perfect is non-perfect

Chosen number: 7

Variables

 result → Holds the returned value

 expected → Set to false

Assert

 Check that the two values match

Exercise 2: Unit Testing

Testing factorSum(int number)
What to test?

Confirm correct sum of factors

Chosen number: 6

Variables

 result → Holds factor sum of 6

 expected → Set to “1 + 2 + 3”

Assert

 Check that the two values match

Exercise 2: Unit Testing

Testing findPerfectNumbers(int limit)
What to test?

Confirm correct retrieval of PN

Chosen number: 1000

Variables

 result → Holds all PN within limit

 expected → Set to 6, 28, and 496

Assert

 Check that the two values match

Exercise 2: Unit Testing

JUnit Test Suite for all test cases
Where to place test suite?

AllTests.java

@RunWith(Suite.class)

What to include?

 PerfectTest1.java

 PerfectTest2.java

 FactorSumTest.java

 FindPerfectNumberTest.java

Exercise 2: Unit Testing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

