
Pytorch: A quick Intro

Alexander Binder

University of Oslo (UiO)

January 25, 2023

Outline | 2

1 PyTorch in General

2 Broadcasting

3 linear algebra basics

4 Einsum the generalist

5 Autograd

Why PyTorch? | 3

⊙ easy to debug in native python
⊙ currently popular in research1

⊙ nowadays pytorch and tensorflow are very similar
https://towardsdatascience.com/
pytorch-vs-tensorflow-in-2020-fe237862fae1

⊙ automatic differentiation / autograd: computes derivatives of
functions for you.

⊙ for those who never heard of it: torchvision model zoo – many
networks with pretrained weights ready to load

1Older frameworks?

https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1
https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1

Is there newer stuff than PyTorch? | 4

There cant be nothing else beside PyTorch :P

See e.g. JAX:

https://github.com/google/jax

https://github.com/google/jax

Key content I

⊙ pytorch tensors: numpy with GPU transfer option
· linear algebra similar to numpy
· data is stored in .data field

⊙ pytorch broadcasting rules
⊙ torch.einsum for general tensor multiplications with

summing
⊙ pytorch → math: be able to write down

mathematically what a certain pytorch operation does
⊙ math → pytorch: be able to decide how math formula

can be realized by which pytorch operations

Key content II

⊙ pytorch autograd:
· records graph of function computations
· capable of computing gradient of weighted sum of

Jacobi matrix
⊙ when one needs to use only data or handle gradients,

tensor have .data and .grad.data fields

Readings | 7

⊙ Installation https://pytorch.org/get-started/locally/
⊙ quick intro: https://pytorch.org/tutorials/beginner/

deep learning 60min blitz.html
⊙ cheat sheet:

https://pytorch.org/tutorials/beginner/ptcheat.html

https://pytorch.org/get-started/locally/
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/ptcheat.html

Pytorch modules | 8

Tensor? | 9

Tensor mathematically:
⊙ 1-tensor: a linear mapping v1 7→ L(v1), representable as

L(v1) = u · v1 by a vector u = (uj)
⊙ 2-tensor: a bilinear mapping v1, v2 7→ L(v1, v2), representable

as L(v1, v2) = v t
1Av2 =

∑
ij v1,iv2,jAij by a matrix A = (Aij)

⊙ 3-tensor: a trilinear mapping v1, v2, v3 7→ L(v1, v2, v3),
representable as L(v1, v2, v3) =

∑
ijk v1,iv2,jv3,kAijk by a 3-dim

array A = (Aij)
⊙ n-tensor ... n-linear mapping ... representable by a n-dim array

A = (Ai1···in)
⊙ n-tensors ↔ n-dim arrays

Tensor? | 10

Same as in physics lectures
⊙ 1-tensor: object/array with 1-dimensional way to index it,

vector
a[i] ↔ ai

⊙ 2-tensor: object/array with 2-dimensional way to index it,
matrix
a[i , k] ↔ ai ,k

⊙ 3-tensor: object/array with 3-dimensional way to index it
a[i , k, l] ↔ ai ,k,l

⊙ n-tensor: object/array with n-dimensional way to index it
⊙ Tensor in pytorch:

a representation of an numpy-array-like structure
Ai , Ai ,j,k , Ai ,j,k or Ai1,...,in with benefits (for storing computed
gradients).

tensor creation I | 11

⊙ with fixed values:
x= torch.zeros((5,1))
y= torch.ones((5))
z= torch.empty((3,2,3))
a = torch.empty((64,32,3,3)).fill_(32.) # initializes to some value
b= a.new_full((3,2),42.) # with same type and device as tensor a
c = torch.full((2, 3), 3.141592)
d = torch.randn((2, 3))

⊙ from a saved tensor:
https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.load.html

https://pytorch.org/docs/stable/generated/torch.save.html
https://pytorch.org/docs/stable/generated/torch.load.html

tensor creation II | 12

⊙ from numpy:
a=np.random.normal(5,size=(2,3)).astype('float32')
x=torch.tensor(a) # this copies data
x2=torch.as_tensor(a) # this does NOT COPY data,
#and does nothing if its already a tensor with right type, etc.
x3=torch.from_numpy(a) # this does NOT COPY data
#when this can be inappropriate? not resizable tensor as limitation

⊙ to numpy:
nparr = a.data.numpy() # a.numpy() works only if it has no grad field!!

tensor properties | 13

x= torch.empty((2,3)) #empty tensor

A tensor has three important properties:
⊙ its .size() or .shape
⊙ the dtype: its type of numerical elements (most nns use

torch.float32)
⊙ device it is placed on (e.g. cpu, cuda:0, cuda:1)

⊙ getting its size: output is a torch.Size() object.
print(x.size())
print(x.shape) # This is a {\tt torch.Size} class instance.

Use tuple or list to convert it:

xsize=tuple(x.size())

tensor properties | 14

get its dtype:
print(x.dtype)

get its device placement
print(x.device) #is a {\tt torch.device} class instance

if you need strings, use . repr ().

Test for equality with

x.device==torch.device('cuda:0')
x.dtype==torch.float #rhs is a torch.dtype object
x.dtype.__repr__()=='torch.float32'

Important: you can print these anywhere in your execution code.
no ugly fixed graph surprises.

current known dtypes and Tensor subclasses | 15

https://pytorch.org/docs/stable/tensors.html

https://pytorch.org/docs/stable/tensors.html

current known devices | 16

https://pytorch.org/cppdocs/api/
enum namespacec10 1a815bc73d9ef8591e4a92a70311b71697.html
⊙ ROCm for AMD
⊙ XLA-compiler driven TPUs

https://pytorch.org/xla/release/1.9/index.html (yup, 1.10 is
the current PyTorch version). Can try those in google Colab:
https://colab.research.google.com/notebooks/intro.ipynb

⊙ Vulkan for Android devices

https://pytorch.org/cppdocs/api/enum_namespacec10_1a815bc73d9ef8591e4a92a70311b71697.html
https://pytorch.org/cppdocs/api/enum_namespacec10_1a815bc73d9ef8591e4a92a70311b71697.html
https://pytorch.org/xla/release/1.9/index.html
https://colab.research.google.com/notebooks/intro.ipynb

Type casting | 17

print(a.dtype)
b= a.to(torch.float64) # see also the legacy method .type()
c= a.type(torch.DoubleTensor)

Device placement | 18

print(a.device)
b= a.to('cuda:0')

Important knowledge: on multi-GPU clusters (and vanilla jobs)
restrict yourself to one device, dont grab all GPUs!

CUDA_VISIBLE_DEVICES=2 python3 blablascript.py

This uses GPU 2 from the output of nvidia smi

Change shape | 19

x=torch.ones((10))
y=x.view((2,5))
z=x.view((-1,5)) #-1 joker

⊙ Be careful: Which elements ends up where in this case?
x=torch.ones((4,2,3))
y=x.view((-1,12))

Outline | 20

1 PyTorch in General

2 Broadcasting

3 linear algebra basics

4 Einsum the generalist

5 Autograd

Broadcasting | 21

Exercise will be on broadcasting. Its important for coding.

a= torch.full((2,3),3.)
b= torch.full((5,1,3),3.)
c= a+b
What will c.shape be ?
https://pytorch.org/docs/stable/notes/broadcasting.html

same holds for many binary operators like + − ∗/

https://pytorch.org/docs/stable/notes/broadcasting.html

Broadcasting | 22

a =torch.ones((4))
b =torch.ones((1, 4))

torch.add(a, b) → (1, 4)
a =torch.ones((4))
b =torch.ones((4, 1))

torch.add(a, b) → (4, 4)!!!
a =torch.ones((3))
b =torch.ones((4, 1))

torch.add(a, b) → (4, 3)
a =torch.ones((3))
b =torch.ones((1, 4))

torch.add(a, b) → ERR

⊙ smaller tensor gets filled from the left with singleton
dimensions until he has same dimensionality as larger tensor,
as if .unsqueeze(0) would be applied again and again

Broadcasting | 23

1– the smaller tensor gets filled from the left with singleton
dimensions until he has same dimensionality as larger tensor, as if
.unsqueeze(0) would be applied again and again

2– then check whether they are compatible – they are incompatible if in
one dimension both tensors have sizes > 1 which are not equal. if
they are incompatible, you will get an error.

3– whenever a dimension with size 1 meets a dimension with a size
k > 1, then the smaller vector is replicated/copied k − 1 times in
this dimension until he reaches in this dimension size k and your
actual operation is applied

Example:
start after insert after copying
(4,1) (4,1) (4,4)

(4) (1,4) (4,4)

Broadcasting | 24

More examples:

start after insert after copying
(1,3) (1,3) (1,3)

(3) (1,3) (1,3)
start after insert after copying
(2,3) (1,2,3) (5,2,3)

(5,1,3) (5,1,3) (5,2,3)
start after insert after copying
(1,7) (1,1,1,7) (5,2,3,7)

(5,2,3,7) (5,2,3,7) (5,2,3,7)
start after insert after copying
(4,1) (1,4,1) ERR

(2,3,7) (2,3,7) ERR

Broadcasting | 25

if broadcasting is too ... , then apply .unsqueeze(dim) on your
tensor, until both tensors have the same number of dimension axes.
The only thing what is done then, is copying along dim = 1 axes.

Outline | 26

1 PyTorch in General

2 Broadcasting

3 linear algebra basics

4 Einsum the generalist

5 Autograd

vector-vector, matrix-matrix | 27

torch.mm(a,b) dot product, not broadcasting. a, b must be
1-tensors

a.size() = (d), b.size() = (d)
torch.dot(a, b) =

∑
d ′

ad ′bd ′ =
∑
d ′

a[d ′]b[d ′]

→ torch.dot(a, b).size() = ()

torch.mm(A,B) matrix multiplication, not broadcasting. A, B
must be 2-tensors

A.size() = (i , k), B.size() = (k, l)
torch.mm(A, B)[i , l] =

∑
k′

Ai ,k′Bk′,l =
∑

k
A[i , k ′]B[k ′, l]

→ torch.mm(A, B).size() = (i , l)

batched matrix multiplication | 28

torch.bmm(A,B) batched matrix multiplication, not broadcasting.
A, B must be 3-tensors. multiplication along last dim of A and
second dim of B.

A.size() = (b, i , k), B.size() = (b, k, l)
torch.bmm(A, B)[b, i , l] =

∑
k′

Ab,i ,k′Bb,k′,l =
∑

k
A[b, i , k ′]B[b, k ′, l]

→ torch.bmm(A, B).size() = (b, i , l)

torch.bmm(A,B) performs for every index k a matrix multi-
plication between A[k, :, :] and B[k, :, :]
– its a for loop over k of torch.mm(A[k,:,:], B[k,:,:])

Think: torch.bmm(A, B) given a known shape of A puts what
restrictions on B??

shapes dont fit?! | 29

example: want to compute matrix vector product by mm(.)
(vA)l =

∑K
k vkAk,l , v .shape = (K) .

v is 1-tensor, cannot use torch.mm(v , A). add a dim in v :
torch.mm(v .unsqueeze(0), A) (1, K) · (K , L) →(1, L)
torch.mm(v .unsqueeze(0), A).squeeze(0) (1, K) · (K , L) →(1, L) → (L)

torch.squeeze(A,dim=2) - remove singleton dim
(a, b, 1, c) → (a, b, c)
torch.unsqueeze(A,dim=1) - insert singleton dim
(a, b, c) → (a, 1, b, c)
torch.unsqueeze(A,dim=0) - insert singleton dim
(a, b, c) → (1, a, b, c)

shapes dont fit?! | 30

...
torch.transpose(A,dim1,dim2) swaps two dimensions
torch.Tensor.permute(*dims) permutes a set of dimensions
rather than just swapping two

What is if ... ? | 31

I have to implement:

Ti ,n,r ,s =
∑

k,m,o
Ai ,k,m,n,oBm,o,r Ck,m,r ,s

Outline | 32

1 PyTorch in General

2 Broadcasting

3 linear algebra basics

4 Einsum the generalist

5 Autograd

Einsum | 33

a general way to do all kinds of batched and non-batched
tensor multiplications: torch.einsum

https://rockt.github.io/2018/04/30/einsum

rule:
⊙ left of − >: all tensors separated by , which are to be

multiplied and summed.
⊙ indices that have same name in multiple tensors,

will get multiplied together
⊙ right of − > the result tensor with remaining indices.
⊙ All indices missing right of − > are summed out so

that they vanish in the result.

https://rockt.github.io/2018/04/30/einsum

Outline | 34

1 PyTorch in General

2 Broadcasting

3 linear algebra basics

4 Einsum the generalist

5 Autograd

The computational graph | 35

A directed-graph representation of computations done.

The computational graph | 36

Forward pass: the actual computation

The computational graph | 37

Backward pass: computing derivates

autograd | 38

What ? Automatic differentiation with respect to variables used in
computations.
You can define a sequence of computations, then call .backward()
or torch.autograd.grad(...). see autograf2.py,
print computationalgraph.py

When ?
⊙ If tensors are leaf tensors and have the requires grad=True

flag set, then they are marked for tracking operations along
the computation sequence for later gradient computation.

⊙ leaf tensor: not created as the result of an operation but
defined by you as an input.

https://pytorch.org/tutorials/beginner/blitz/autograd tutorial.
html#sphx-glr-beginner-blitz-autograd-tutorial-py

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py
https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autograd-tutorial-py

autograd | 39

...

if e is a tensor with 1 element, then e.backward() computes
the gradient of e with respect to all its inputs that were in-
volved in computing e.

see print computationalgraph.py: the whole backward graph

autograd | 40

if e is a tensor of n ≥ 2 elements, then the gradient of e is a
matrix, the Jacobi-matrix. Example for 3 elements:

e = (e1, e2, e3)

de/dx =



de1
dx1

de2
dx1

de3
dx1

de1
dx2

de2
dx2

de3
dx2...

...
...

de1
dx8

de2
dx8

de3
dx8...

...
...

de1
dxD

de2
dxD

de3
dxD



autograd | 41

if e is a tensor of n ≥ 2 elements, then the gradient of e is a matrix, the
Jacobi-matrix.
In this case: (for an example where e has 3 elements)
e.backward(torch.tensor([-5,2,6])) computes the D-dim
weighted gradient vector

de1
dx ∗ (−5) + de2

dx ∗ 2 + de3
dx ∗ 6

=



de1
dx1

∗ (−5) + de2
dx1

∗ 2 + de3
dx1

∗ 6
de1
dx2

∗ (−5) + de2
dx2

∗ 2 + de3
dx2

∗ 6
...

de1
dx8

∗ (−5) + de2
dx8

∗ 2 + de3
dx8

∗ 6
...

de1
dxD

∗ (−5) + de2
dxD

∗ 2 + de3
dxD

∗ 6


This is an inner product between the jacobi matrix and a vector that has
as many elements as e in the forward pass.

autograd | 42

Autograd

⊙ Autograd tracks the graph of computations
⊙ Tracked computations will be used to compute a

gradient automatically
⊙ use with torch.no grad(): environment to not

record computations for gradient calculations for some
larger block of code that is reused – use case:
everything outside of handling training data, e.g.
computing validation or test scores.a

⊙ outlook / out of class: for GAN-training
sometensor.detach() prevents the gradient flowing
from sometensor to all those parts used to compute
sometensor.

aWhy you dont want to track gradient computations in this case?

autograd | 43

Note: If you have a tensor with attached gradient, then the .data
stores the tensor values, and .grad.data the gradient values

vals=x.data.numpy() #exports function values to numpy
g_vals=x.grad.data.numpy() #exports gradient values to numpy

Others | 44

⊙ useful stuff: standard operations like mean or max,
torch.random, torch.nn.functional

⊙ Things behaving unexplainably weird? check your version:
print(torch. version)

The end | 45

Questions?!

	PyTorch in General
	Broadcasting
	linear algebra basics
	Einsum the generalist
	Autograd

