
IN3310

Alex

Week 05: Fine Tuning of neural networks

[The following notes are compiled from various sources such as textbooks, lecture ma-
terials, Web resources and are shared for academic purposes only, intended for use by
students registered for a specific course. In the interest of brevity, every source is not
cited. The compiler of these notes gratefully acknowledges all such sources. ]

1 two exemplary ways of fine-tuning, setup with
a separate validation set

� take the 102 class flowers dataset https://www.dropbox.com/s/dx5ikzvrlqs2bbw/
102flowersn.zip?dl=0 and write a dataset class which can work with a
train/val/test split for it. The difference to the 102 flowers from oxford
is that I provided in it for you train/val/test split for your convenience
(bowing politely in front of the students).

� take any deep network you like which has pretrained weights (a smaller
resnet, a smaller densenet are training fast)

� train a deep neural network in three different modes

(A) once without loading weights and training all layers.

(B) once with loading model weights before training and training all lay-
ers,

(C) once with loading model weights before training and training only the
last one trainable layer (note: for quite some problems, the approach
B is better than C)

For each of these 2 modes select the best epoch by the performance of the
model on the validation set. Typically less than 20 epochs should suffice
for training when using finetuning. You can run also optionally a selection
over a few learning rates, if you use a GPU.

1

https://www.dropbox.com/s/dx5ikzvrlqs2bbw/102flowersn.zip?dl=0
https://www.dropbox.com/s/dx5ikzvrlqs2bbw/102flowersn.zip?dl=0


1 TWO EXEMPLARY WAYS OF FINE-TUNING, SETUP WITH A
SEPARATE VALIDATION SET

What do you need to do for steps when you start with a code like
the MNIST training code?

� write a new dataloader for your training dataset, the flowers

� adjust paths for data (and if necessary for label paths/files or files deter-
mining splits into train/val/test)

� write the code so that it works with paths relative to the directory of your
script

� as you did not have data augmentation so far (next lecture), you can
simply use the following:

data_transforms = {

'train': transforms.Compose([

transforms.Resize(256),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

'val': transforms.Compose([

transforms.Resize(224),

transforms.CenterCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

]),

}

I am aware that I am using here the imagenet mean and the imagenet stan-
dard deviation.

� use some deep learning model from the model zoo, load its weights before
training for settings B and C

� adjust the number of classes in the last linear/dense layer

� in the optimizer provide the proper parameters for training for settings
A,B,C

� collect and plot curves of the training loss, the validation set loss and the
validation set accuracy. also print the final test accuracy of the selected
model

� A note: Calling a model constructor with pretrained=True does not
tell you what really goes on when one. Check https://github.com/

pytorch/vision/blob/master/torchvision/models/resnet.py to see
what routine is used to load a model.

2

https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py


1.1 Bonus Task 3 SOME MORE THEORY

1.1 Bonus Task

Try out the effect of mixup training on your problem:
https://arxiv.org/abs/1710.09412. The paper is good to read and it is

not too complicated to implement that one. I have no guess how much it can
bring here because the flowers are a relatively simple problem. It is good to
know this kind of trick anyway.

2 Some theory

� You are given a 2-dimensional convolution with feature map input size
(78, 84). When using a kernel of size (5, 5) and stride 3 with padding of 2,
what will be the spatial size of the feature map which is the output of the
convolution? Note that the spatial size does not depend on the number
of input or output channels.

� You are given a 1-dimensional convolution. When using a kernel of size 9
and stride 3 with padding 1, which spatial input size do you need to have,
so that you have a spatial output size of 16?

� You are given a 2-dimensional convolution. When using a kernel of size
(3, 5) and stride 2 with padding of 0, what will be the spatial size of the
feature map which is the output of the convolution, which spatial input
size do you need to have, so that you have a spatial output size of (128, 96)?

3 Some more theory

How many trainable parameters are in

� a 2-D convolutional layer with input (32, 19, 19), kernel size (7, 7), stride
3, 64 output channels?

� a 2-D convolutional layer with input (512, 25, 25), kernel size (1, 1), stride
1, 128 output channels?

� how many multiplications and how many additions are performed in the
first case above?

3

https://arxiv.org/abs/1710.09412

	 two exemplary ways of fine-tuning, setup with a separate validation set
	Bonus Task

	Some theory
	Some more theory

