
50.039 – Theory and Fundamentals of Deep

Learning

Alex

Week 10: RNN Homework

[The following notes are compiled from various sources such as textbooks, lecture ma-
terials, Web resources and are shared for academic purposes only, intended for use by
students registered for a specific course. In the interest of brevity, every source is not
cited. The compiler of these notes gratefully acknowledges all such sources. ]

1 Coding Homework – Generating Star Trek Di-
alogues

You can take as starting point the tutorial:
https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.

html,
then use
star trek transcripts all episodes f.csv as input.

What do you have to modify in the tutorial code?

• Number of categories = 1 for this exercise as you only have one category.
So, there will be no category index as input

• Use an LSTM, replace the custom RNN (what works well: 2 or 3 layers
of LSTM with 100 or 200 hidden dimensions)

reading the csv:

all_letters = string.ascii_letters + "0123456789 .,:!?’[]()/+-="

def get_data():

category_lines = {}

all_categories = [’st’]

category_lines[’st’]=[]

1

https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html


filterwords=[’NEXTEPISODE’]

with open(’./star_trek_transcripts_all_episodes.csv’, newline=’’) as csvfile:

reader = csv.reader(csvfile, delimiter=’,’, quotechar=’"’)

for row in reader:

for el in row:

if (el not in filterwords) and (len(el)>1):

print(el)

v=el.strip().replace(’;’,’’).replace(’\"’,’’)

category_lines[’st’].append(v)

n_categories = len(all_categories)

print(len(all_categories), len(category_lines[’st’]))

print(’done’)

return category_lines,all_categories

This gives you a dictionary with only one key and that key contains a huge list
with many star trek TOS sentences.

You can use also the raw data star trek transcripts all episodes.csv

but there you may need to filter more special characters. You are allowed to
manually clean the csv.

1.1 What else to program

• implement a character level RNN for the star trek monologues. Model
suggestion:

– LSTM 2 or 3 layers, 100 or 200 or 300 units

– dropout with 10% probability

– fully connected (hidden units → number of output tokens)

∗ number of output tokens = alphabet plus EOS

– if you use NLLLoss, then a logsoftmax layer

• implement a temperatured sample

• after every 2k to 5k samples in training and after every full epoch sample
10 to 20 different samples. capture that output (e.g. in a .txt-file), for me
a temperature of 0.5 worked okay

• measure accuracy on the test set every epoch

• copy off that .txt file and the model before you shutdown the GPU session.

• sampling: what works well for me is a temperature of 0.5. You can use a
subset of all letters as starting letters. I suggest only CAPITAL letters,

2



no Q or XY, as all the start trek dialogues start with the name of the
speaker in capitals.

• you are not required to use a batchsize > 1, it makes things faster though

1.2 What to deliver?

• your code, your trained model (can save the model dictionary of parame-
ters rather than the model as a whole).

• the .txt file of outputs of the sampling from the moodel (maybe 5 samples
every epoch) for each of your epochs

• plot a graph of train and test loss over epochs

• report accuracy per epoch – accuracy here is the prediction of the next
character in a sentence.

• Report the best quote you have seen ! We will vote your quotes
with a price in class.

best_model_wts = net.state_dict()

torch.save(best_model_wts,’./model.pt’)

2 Some help

Similar approach as with the exercise on classifying names.

some helper to read if you want to use it with batch size larger than 1:
https://towardsdatascience.com/taming-lstms-variable-sized-mini-batches-

and-why-pytorch-is-good-for-your-health-61d35642972e

• category lines[category] is a list of names for the particular category,
in this code you have only one category, and it would be a list of words or
sentences instead here.

• def randomTrainingPair(): returns a random pair of category and
word/sentence, here it needs to return only a word/sentence.

3 Going beyond

THIS IS NOT PART OF THE HOMEWORK.

You can use your saved model to play with the sampling temperature.

3

https://towardsdatascience.com/taming-lstms-variable-sized-mini-batches-and-why-pytorch-is-good-for-your-health-61d35642972e
https://towardsdatascience.com/taming-lstms-variable-sized-mini-batches-and-why-pytorch-is-good-for-your-health-61d35642972e


You can even implement an approach which assigns a higher sampling tem-
perature whenever the input was a space or at the start of a sentence.

The character level rnn gets words right, but not really their ordering. Since
star trek uses 20th century english, you can judge that. You can try on your
own to do a word-level modelling with word embeddings, but that will be much
harder to achieve (one needs usually larger corpora). Modern approaches com-
bine both ideas. One can learn hierarchical rnns (tree-LSTMs for example,
where folding of batches is more complicated). You can use your code to play
with.

Babbling words is not so bad and can make one achieve a lot, compare with
successes of certain politicians on other continents.

For fun: you can model an RNN for philosophy texts if they are of sufficient
length http://www.philosophy-index.com/texts.php and the like. Problem
is quality judgments ...

You can improve this modeling by doing this with character embeddings, or
with word embeddings as a RNN on a word level.

4

http://www.philosophy-index.com/texts.php

	Coding Homework – Generating Star Trek Dialogues 
	What else to program
	What to deliver?

	Some help
	Going beyond

