IN3310

Alex
Week 05: Fine Tuning of neural

networks

[The following notes are compiled from various sources such as textbooks, lecture ma-
terials, Web resources and are shared for academic purposes only, intended for use by
students registered for a specific course. In the interest of brevity, every source is not
cited. The compiler of these notes gratefully acknowledges all such sources. ]

1 two exemplary ways of fine-tuning, setup with
a separate validation set

o take the 102 class flowers dataset https://www.dropbox.com/s/w9yfsr8xifkngs7/
102flowersn.zip?d1=0 and write a dataset class which can work with a
train/val/test split for it. The difference to the 102 flowers from oxford
is that I provided in it for you train/val/test split for your convenience
(bowing politely in front of the students).

e take any deep network you like which has pretrained weights (a smaller
resnet, a smaller densenet are training fast)

e train a deep neural network in three different modes

(A) once without loading weights and training all layers.

(B) once with loading model weights before training and training all lay-
ers,

(C) once with loading model weights before training and training only the

last one trainable layer (note: for quite some problems, the approach
B is better than C)

For each of these 2 modes select the best epoch by the performance of the
model on the validation set. Typically less than 20 epochs should suffice
for training when using finetuning. You can run also optionally a selection
over a few learning rates, if you use a GPU.



1.1 2B&GRUTRHESOURCES (MORE EXERCISES IN THE NEXT SECTION!)

What do you need to do for steps when you start with a code like
the MNIST training code?

write a new dataloader for your training dataset, the flowers

adjust paths for data (and if necessary for label paths/files or files deter-
mining splits into train/val/test)

write the code so that it works with paths relative to the directory of your
script

as you did not have data augmentation so far (next lecture), you can
simply use the following:

I am aware that I am using here the imagenet mean and the imagenet stan-
dard deviation.

1.1

use some deep learning model from the model zoo, load its weights before
training for settings B and C

adjust the number of classes in the last linear/dense layer

in the optimizer provide the proper parameters for training for settings
AB,C

collect and plot curves of the training loss, the validation set loss and the
validation set accuracy. also print the final test accuracy of the selected
model

A note: Calling a model constructor with pretrained=True does not
tell you what really goes on when one. Check https://github.com/
pytorch/vision/blob/master/torchvision/models/resnet.py to see
what routine is used to load a model.

Bonus Task

Try out the effect of mixup training on your problem:

https://arxiv.org/abs/1710.09412. The paper is good to read and it is
not too complicated to implement that one. I have no guess how much it can
bring here because the flowers are a relatively simple problem. It is good to
know this kind of trick anyway.

2

GPU resources (more exercises in the next
section!)

you have two options: use your own GPU, or use the university provided re-
sources



2 GPU RESOURCES (MORE EXERCISES IN THE NEXT SECTION!)

ml6.hpc.uio.no

ml7.hpc.uio.no

How to use them ?

log in using ssh and your ifi username:

On windows PuTTY or MobaXterm may help you. On mac you can use ssh

as is.

I do use windows, but for games :D.

each of these nodes has 8 GPUs, each with 11 Gbyte GPU Ram. The
critical resource will be GPU RAM. If you go over the limit, your script
will die with a mem allocation error.

keep the scripts at a training batchsize of 16 with using a resnet18
- in order to keep mem usage below 2Gbyte. This does not apply
if you use your own GPU, but then keep it below 5Gbyte (in case i got
to check your code on my home GPU, alternatively i will reduce your
batchsize manually).

use nvidia-smi to see which on which GPUs scripts are running and how
much memory is used on each GPU. Choose a GPU such which has still
2 Gbyte RAM unused.

to start a script on a specific GPU with numerical number z € {0,...,7}
use the following command below. However this will stop when you log
out of ssh. Thus this makes sense only to debug your code.

to start a script which does not hang up on logout (on a specific GPU
with numerical number = € {0,...,7}), please use

What does this do?

nohup starts the command without hangup
> outl.log redirects normal output onto outl.log
2 > errorl.log redirects error messages onto errorl.log

& places the job in the background



3 SOME THEORY

e do not start a script when there are already 5 jobs running on it or when
it is foreseaable that your 2Gbyte wont fit into this GPU RAM.

e how to kill your own process?

ps -u pineapple

1 shows only the processes of the user pineapple

ps -u pineapple | grep -i python

1 shows only the processes of user pineapple which are python. The
-i makes a case sensitive grep search. If you see nothing, then you

may have mistyped your command, or you are not using python, or
your process has already finished.

— both of these will show you process ids (PID)s

kill -9 PID
1 kills your process with pid PID

3 Some theory

e You are given a 2-dimensional convolution with feature map input size
(78,84). When using a kernel of size (5,5) and stride 3 with padding of 2,
what will be the spatial size of the feature map which is the output of the
convolution? Note that the spatial size does not depend on the number
of input or output channels.

e You are given a 1-dimensional convolution. When using a kernel of size 9
and stride 3 with padding 1, which spatial input size do you need to have,
so that you have a spatial output size of 167

e You are given a 2-dimensional convolution. When using a kernel of size
(3,5) and stride 2 with padding of 0, what will be the spatial size of the
feature map which is the output of the convolution, which spatial input
size do you need to have, so that you have a spatial output size of (128,96)?

Solution
Let O = output dimension, M = input dimension, r = padding, ksize = kernel
size, and S = stride. Then we have the formula

(1)

0O = floor <M—i—2r— kszze) +1

S

1. O = floor (B+1=5 41, 84425 4 1) — (25,28)

2. 16 = floor (#42=2 + 1). One possible value of M can be calculated from
3x15=M —7=— M = 52.



5 LOGISTIC SIGMOID SATURATION

3a Let (My, M) be the input size. Then O = floor (#4=3 4 1, M2=5 4 1),

3b (128,96) = floor (M21;3 +1, M22__5 + 1). Possible values of My, M5 can be
calculated by M} = 127% 2+ 3 =257, My = 95 % 24+ 5 = 195.

4 Some more theory
How many trainable parameters are in

e a 2-D convolutional layer with input (32,19,19), kernel size (7,7), stride
3, 64 output channels?

e a 2-D convolutional layer with input (512,25, 25), kernel size (1,1), stride
1, 128 output channels?

e how many multiplications and how many additions are performed in the
first case above?

Solution

Note that the number of parameters for a convolutional network depends upon
the kernel size, and number of input and output channels, but not on the input
size or the stride.

1. The number of trainable parameters = (327 %7 + 1) % 64 = 1569 * 64 =
100416. Here 32x7x7 is the kernel size for a 7x7 window with 32 channels,
1 is for the bias, and there are 64 output channels.

2. (5124 1) * 128 = 65664.

3a The number of multiplications is 32 % 7 * 7 = 1569 each time an inner
product is calculated. The output shape for a 7x7 window over a 19x19
image with stride 3 is floor (%=~ +1,22=T + 1) = (5,5) so there are 25
inner product evaluations per output channel. The total number of mul-
tiplications is then 1569 * 25 % 64 = 2510400.

3b The number of additions = 1 each time an inner product is calculated.
The total number of additions is therefore 1 * 25 * 64 = 1600.



