
Exam INF5830, 2013, some solutions

1 Accuracy and estimation (15%)

Kim is testing a classifier for entailment vs. non-entailment on a test set of 400
items. The results may be summarized in the following table.

Test results
entailment non-entailment

entailment 90 30
Reference

non-entailment 10 270

(a) What is the accuracy of the classifier on this test set?

– The true positives are tp = 90

– The true negatives are tn = 270

– The sample size is n = 400

– From its definiton the accuracy equals tp+tn
n = 90+270

400 = 0.9

(b) Assume the test set is a random sample from a large population. Estimate
an interval with a 95% confidence level for the accuracy of the classifier
on the population.

This is a proportion with probability p. We estimate it from a sample
of size n = 400. We have an estimate of p from the sample: p̂ = 0.9
This is a binomial distribution, but we may approximate it with a normal
distibution since np = 360 > 10 and n(1− p) = 36 > 10. The formula for
the interval is then

[p̂− z∗ s√
n
, p̂ +

z∗ s√
n

]

where s2 = p̂(1 − p̂). The z∗-value is the well-known 1.96. Putting this
into the formula yields

[0.9− 1.96
√

0.9 ∗ 0.1√
400

, 0.9 +
1.96
√

0.9 ∗ 0.1√
400

]

Rounding off 1.96 to 2 yields the more readable

[0.87, 0.93]

If anybody has used the t-distribution, that is accepted as equally good. If
anybody has managed to calculate the correct interval from the binomial
distribution, that is of course also fine.
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2 Dependency syntax and parsing (20%)

(a) Draw the dependency graph for the sentence A hearing is scheduled on
the issue today., here provided in the so-called CoNLL-format:

1 A a DT DT 2 NMOD
2 hearing hearing NN NN 3 SBJ
3 is be VBZ VBZ 0 ROOT
4 scheduled schedule VBD VBD 3 VC
5 on on IN IN 2 PP
6 this this DT DT 7 NMOD
7 issue issue NN NN 5 PCOMP
8 today today NN NN 4 TMP
9 . . . . 3 PUNC

(b) Choose three different dependencies in the graph above and use these to
present three different criteria for syntactic head status, i.e. you should
provide at least one criterion per dependency.

(i) issue - this
government: the head governs the form of the dependent, (would be
’these’ if head was plural).

(ii) is - scheduled
morphosyntactic locus: the head is inflected (is scheduled, are sched-
uled etc.)

(iii) hearing - on
subcategorization: the head selects the dependent and determines
whether it is obligatory. In the example, the head ’hearing’ selects
the argument headed by ’on’

(c) Nivre’s arc eager algorithm operates with four parse transitions, two of
which are parameterized by the dependency relation r: Shift, Reduce,
Left-Arcr, Right-Arcr

(i) Show the transition sequence that results from applying the algo-
rithm to the sentence in (a) above, at each step providing the transi-
tion employed (Shift, Reduce, Left-Arcr, Right-Arcr), as well as the
contents of the stack and queue.

Initial state: [root] [A hearing is scheduled on this issue today]

Shift

[root A] [hearing is scheduled on this issue today]

LeftArc(nmod)

Initial state: [root] [hearing is scheduled on this issue today]

Shift

[root hearing] [is scheduled on this issue today]
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Left-Arc(sbj)

[root] [is scheduled on this issue today]

Right-Arc(root)

[root is] [scheduled on this issue today]

Right-Arc(vc)

[root is scheduled] [on this issue today]

Since the Left-Arc transition pops the dependent off the stack, there
is no way of connecting ’on’ to ’hearing’. OK, if you stop here. Also
ok if you continue, as long as you end up with a non-empty stack.

(ii) Does the algorithm terminate successfully? Why/why not?
No, the algorithm does not terminate successfully. The reason for
this is that the graph contains non-projective arcs, i.e. crossing arcs
or arcs that violate the constraint of projectivity: if i → j, then
i → ∗k, for every node k such that i < k < j or j < k < i. The
algorithm ensures projectivity by the formulation of the Left-Arc(r)
transition. Since this transition pops the stack after application, this
ensures that the dependent may not have further dependents to the
right (which would incur a violation of the projectivity constraint).
The arc between ’hearing’ and ’on’ violates this constraint.

3 Semantic Role Labeling (20%)

(a) “In most languages, it is often the case that subjects correspond to agents”.
Comment on this statement in the light of the sentence in (1a) above.
What does this tell you more generally about the relationship between
syntax and semantics?
Whereas generalizations like these certainly exist, the relation between
syntax and semantics is not a one-to-one mapping, due to so-called mis-
matches. Syntactic alternations like the passive alternation and the dative
alternation offer alternative ways of expressing the same semantic content
syntactically. The sentence in (1) is a passive sentence, where the object
has been promoted to subject position and is therefore not a prototypical
subject in this respect.

(b) Briefly describe Dowty’s theory of semantic roles. What is the Argument
Selection Principle and how does it account for the analysis of our example
sentence in (1a)?
Proto-roles are clusters of semantic entailments determined for each pred-
icate of which there are only two: proto-agent and proto-patient. Argu-
ments have different degrees of membership (prototype) in a proto-role.
Linking to syntactic structure is formulated in the Argument Selection
Principle (ASP): the argument with the most p-a properties becomes the
subject, the argument with the most p-p properties becomes the object.
Proto-agent properties:

3



– volition

– sentience

– causes event

– movement

Proto-patient properties:

– change of state

– incremental theme

– causally affected

– stationary

For the example sentence (a hearing):

– p-a: –

– p-p: causally affected

This means that in an active version of this sentence (They scheduled a
hearing on . . . ) a hearing would be the object of the sentence, since it has
the most p-p properties.

(c) We want to improve our semantic role system by including generalizations
like the one expressed in (2a) above. We therefore wish to implement
the Parse Tree Path feature first described in Gildea & Jurafsky (2002).
Consider the simple sentence in (i) below:

(i) The man ate cake

Provide a phrase structure tree for this sentence and explain how to extract
the path for the two arguments man and cake. Could we extract the same
type of information from a dependency analysis of the same sentence?
The path feature should show the path from the predicate to the argument
in question:

– ’man’: v ↑ vp ↑ s ↓ np ↓ n

– ’cake’: v ↑ vp ↓ np ↓ n

A dependency representation does not provide phrasal categories like vp,
np, so we could not extract the exact same information. Rather the syn-
tactic relation between the predicate and the arguments would be encoded
directly as dependency relations ’subj’ and ’obj’. A similar path feature
using a dependency structure would be:

– ’man’: ↑ subj

– ’cake’: ↑ obj
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6 Decision trees (10%)

(The following example is of course simplified.) Kim is training an entailment
classifier on 25 training items. Each item consists of a premise, P, and a hy-
pothesis, H. The test items belong to one of two classes: Entailment or Non-
entailment. Kim has decided to use two features only, whether the premise
contains the word “not” and whether the hypothesis contains “not”. The 25
observations are summed up in the following table.

P contains “not” H contains “not” class Number of obs.

yes yes entailment 4
yes no non-entail 6
no yes non-entail 3
no no entailment 12

all other combinations 0

(a) Construct a decision tree classifier from these training data. You do not
have to consider information gain or other measures to select the first
feature for splitting.

(b) Evaluate the classifier on the training data. What is its accuracy, precision
and recall?

We see from the tree that all training items are classified correctly, hence
accuracy, recall and precision all equal 1.0.

7 Classifiers (35%)

(a) Give a short description of the main principles underlying a Naive Bayes
classifier. You do not have to discuss the differences between the binomial
and the multinomial approach to text classification.

Setup:

– A well-defined set of classes C = {c1, c2, . . . , cn}.
– A set of features {f1, f2, . . . , fm}.
– For each feature fi there is a corresponding set of values Vi = {vi1, vi2, . . . viki

}.
– An observation is represented by a feature vector f = 〈f1 = v1, f2 =

v2, . . . fn = vn〉 where each vi is one of the values in the corresponding
value set Vi.

– The goal is a classifier which to each feature vector f assigns the
correct class c from C.

Naive Bayes is based on probabilities. It assigns a probability P (cj | f)
to each class cj given f and selects the class for which this probability is
largest, in notation:

arg max
c∈C

P (c | f)
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To estimate this, Bayes’ formula is used:

P (c | f) =
P (f | c)P (c)

P (f)

Since there are very many different vectors and we cannot assume to have
seen them before. hence it is assumed that

P (f | c) = P (〈f1 = v1, f2 = v2, . . . fn = vn〉 | c)(1)

= P (f1 = v1 | c)× P (f2 = v2 | c)× · · · × P (fn = vn | c)(2)

=

n∏
i=1

P (fi = vi | c)(3)

This it the naive assumption which is formally only correct if the features
are independent, which they in general are not.

The final expression for the Bayes’classifier can be written:

arg max
c∈C

P (c | f) = arg max
c∈C

P (c)

n∏
i=1

P (fi = vi | c)

(We can remove f from the denominator since it is the same for all the
classes and does not influence which class is argmax.)

To estimate the probabilities we use maximum likelihood estimations on
the training set

P̂ (ci) =
C(ci)

C(o)

where C(o) is a count of all observations and C(ci) is the count of the
observations in class ci, and similalry

P̂ (fj = vj | ci) =
C(fj = vj , ci)

C(ci)

where C(fj = vj , ci) is a count of all observations from class ci where fj
takes the value vj .

(b) Kim is training a Naive Bayes classifier on the same training data as
in exercise (6). How will this classifier classify an observation where H
contains “not”, while P does not contain “not”? State reasons for your
answer.

– There are two classes: ent,non

– There are two features f1, f2 which each may take one of two values:
y, n

– f1 = y if P contains “not” and f1 = n if P does not contain “not”

– f2 = y if H contains “not” and f2 = n if H does not contain “not”
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We shall determine the class for an observation 〈f1 = n, f2 = y〉. From
point (a), we must compare

P (ent) ∗ P (f1 = n | ent) ∗ P (f2 = y | ent) to

P (non) ∗ P (f1 = n | non) ∗ P (f2 = y | non)

We use maximum likelihood to estimate the probabilities:

P (ent) =
C(ent)

n
=

4 + 12

25
= 16/25

P (non) =
C(non)

n
=

6 + 3

25
= 9/25

P (f1 = n | ent) =
C(f1 = n, ent)

C(ent)
=

12

4 + 12
= 3/4

P (f2 = y | ent) =
C(f2 = y, ent)

C(ent)
=

4

4 + 12
= 1/4

P (f1 = n | non) =
C(f1 = n, non)

C(non)
=

3

6 + 3
= 1/3

P (f2 = y | non) =
C(f2 = y,non)

C(non)
=

3

6 + 3
= 1/3

We may fill in the formulas and see that

P (ent) ∗ P (f1 = n | ent) ∗ P (f2 = y | ent) = 16/25 ∗ 3/4 ∗ 1/4 = 3/25

P (non) ∗ P (f1 = n | non) ∗ P (f2 = y | non) = 9/25 ∗ 1/3 ∗ 1/3 = 1/25

Hence, the classifier will wrongly classify this item as entailment.

(c) Given the training data, will you say that this task is linearly separable?
State reasons for your answer.

The features are categorical, but since they take two values, they may be
considered numerical where we set 0 for n and 1 for y. The observations
are then in a two-dimensional vector space, a plane, which we may “draw”
like:

1 3 non 4 ent
H contains “no”

0 12 ent 6 non
0 1

P contains “no”

We see that it is impossible to draw a line which put the entailment points
(0,0) and (1,1) on one side and the non-entailment points (0,1) and (1,0)
on the other side.
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(Observation, not part of the exercise. The Naive Bayes classificator will
misclassify two of the four groups, it will misclassify 7 observations. It is
possible to make a linear classifier which only misclassifies one group of 3
items, but not a correct linear classifier.)

END
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