
IN4080_2020_Mandatory_1_B

September 4, 2020

1 IN4080 2020, Mandatory assignment 1, part B
1.0.1 About the assignment

Your answer should be delivered in devilry no later than Friday, 18 September at 23:59

This is the second part of mandatory assignment 1. See part A for general requirements. You are
supposed to answer both parts.

1.0.2 Goal of part A

In this part you will get experience with

• setting up and running experiments
• splitting your data into development and test data
• n-fold cross-validation
• models for text classification
• Naive Bayes vs Logistic Regression
• the scikit-learner toolkit
• vectorization of categorical data

As background for the current assignment you should work through two tutorials

• Document classification from the NLTK book, Ch. 6. See exercise 3 below for a correction
to the NLTK book.

• The scikit-learn tutorial on text classification, http://scikit-
learn.org/stable/tutorial/text_analytics/working_with_text_data.html all the way up
to and including “Evaluation of the performance of the test set”.

If you have any questions regarding these two tutorials, we will be happy to answer them during
the group/lab sessions.

1.1 Ex 1 First classifier and vectorization (10 points)
1.1.1 1a) Inititial classifier

We will work interactively in python/ipython/Jupyter notebook. Start by importing the tools we
will be using:

[]: import nltk
import random
import numpy as np

1

import scipy as sp
import sklearn
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
from sklearn.linear_model import LogisticRegression

As data we will use the Movie Reviews Corpus that comes with NLTK.

[]: from nltk.corpus import movie_reviews

We can import the documents similarly to how it is done in the NLTK book for the Bernoulli Naive
Bayes, with one change. We there use the tokenized texts with the command

• movie_reviews.words(fileid)

Following the recipe from the scikit “Working with text data” page, we can instead use the raw
documents which we can get from NLTK by

• movie_reviews.raw(fileid)

scikit will then tokenize for us as part of count_vect.fit (or count_vect.fit_transform).

[]: raw_movie_docs = [(movie_reviews.raw(fileid), category) for
category in movie_reviews.categories() for fileid in
movie_reviews.fileids(category)]

We will shuffle the data and split it into 200 documents for final testing (which we will not use for
a while) and 1800 documents for development. Use your birth date as random seed.

[]: random.seed(2920)
random.shuffle(raw_movie_docs)
movie_test = raw_movie_docs[:200]
movie_dev = raw_movie_docs[200:]

Then split the development data into 1600 documents for training and 200 for development test set,
call them train_data and dev_test_data. The train_data should now be a list of 1600 items, where
each is a pair of a text represented as a string and a label. You should then split this train_data
into two lists, each of 1600 elements, the first, train_texts, containing the texts (as strings) for
each document, and the train_target, containing the corresponding 1600 labels. Do similarly to
the dev_test_data.

[]: """To be filled in"""

It is then time to extract features from the text. We import

[]: from sklearn.feature_extraction.text import CountVectorizer

We then make a CountVectorizer v. This first considers the whole set of training data, to determine
which features to extract:

2

[]: v = CountVectorizer()
v.fit(train_texts)

Then we use this vectorizer to extract features from the training data and the test data

[]: train_vectors = v.transform(train_texts)
dev_test_vectors = v.transform(dev_test_texts)

To understand what is going on, you may inspect the train_vectors a little more.

We are now ready to train a classifier

[]: clf = MultinomialNB()
clf.fit(train_vectors, train_target)

We can proceed and see how the classifier will classify one test document, e.g.

dev_test_texts[14]
clf.predict(dev_test_vectors[14])

We can use the procedure to predict the results for all the test_data, by

clf.predict(dev_test_vectors)

We can use this for further evaluation (accuracy, recall, precision, etc.) by comparing to
dev_test_targets. Alternatively, we can get the accuracy directly by

[]: clf.score(dev_test_vectors, dev_test_target)

Congratulations! You have now made and tested a multinomial naive Bayes text classifier.

1.1.2 1b) Parameters of the vectorizer

We have so far considered the standard parameters for the procedures from scikit-learn. These pro-
cedures have, however, many parameters. To get optimal results, we should adjust the parameters.
We can use train_data for training various models and dev_test_data for testing and comparing
them.

To see the parameters for CountVectorizer we may use

help(CountVectorizer)

In ipython/Jupyter notebook we may alternatively use

CountVectorizer?

We observe that CountVectorizer case-folds by default. For a different corpus, it could be interesting
to check the effect of this feature, but even the movie_reviews.raw() is already in lower case, so that
does not have an effect here (You may check!) We could also have explored the effect of exchanging
the default tokenizer included in CountVectorizer with other tokenizers.

Another interesting feature is binary. Setting this to True implies only counting whether a word
occurs in a document and not how many times it occurs. It could be interesting to see the effect
of this feature.

3

(Observe, by the way, that this is not the same as the Bernoulli model for text classfication. The
Bernoulli model takes into consideration both the probability of being present for the present words,
as well as the probability of not being present for the absent words. The binary multinomial model
only considers the present words.)

The feature ngram_range=[1,1] means we use tokens (=unigrams) only, [2,2] means using bigrams
only, while [1,2] means both unigrams and bigrams, and so on.

Run experiments where you let binary vary over [False, True] and ngram_range vary over [[1,1],
[1,2], [1,3]] and report the accuracy with the 6 different settings in a 2x3 table.

Which settings yield the best results?

Deliveries: Code and results of running the code as described. Table. Answers to the questions.

1.2 Ex 2 n-fold cross-validation (12 points)
1.2.1 2a)

Our dev_test_data contain only 200 items. That is a small number for a test set for a binary
classifier. The numbers we report may depend to a large degree on the split between training
and test data. To get more reliable numbers, we may use n-gram cross-validation. We can use
the whole dev_test_data of 1800 items for this. To get round numbers, we decide to use 9-fold
cross-validation, which will put 200 items in each test set.

Use the best settings from exercise 1 and run a 9-fold cross-validation. Report the accuracy for
each run, together with the mean and standard deviation of the 9 runs.

In this exercise, you are requested to implement the routine for cross-validation yourself, and not
aplly the scikit-learn function.

Deliveries: Code and results of running the code as described. Accuracy for each run, together
with the mean and standard deviation of the accuracies for the 9 runs.

1.2.2 2b)

The large variation we see between the results, raises a question regarding whether the optimal
settings we found in exercise 1, would also be optimal for another split between training and test.

To find out, we combine the 9-fold cross-validation with the various setting for CountVectorizer.
For each of the 6 settings, run 9-fold cross-validation and calculate the mean accuracy. Report the
results in a 2x3 table. Answer: Do you see the same as when you only used one test set?

Deliveries: Code and results of running the code as described. Table. Answers to the questions.

1.3 Ex 3 Logistic Regression (8 points)
We know that Logistic Regression may produce better results than Naive Bayes. We will see what
happens if we use Logistic Regression instead of Naive Bayes. We start with the same multinomial
model for text classification as in exercises (1) and (2) above (i.e. we process the data the same way
and use the same vectorizer), but exchange the learner with sciki-learn’s LogisticRegression. Since
logistic regression is slow to train, we restrict ourselves somewhat with respect to which experiments

4

to run. We consider two settings for the CountVectorizer, the default setting and the setting which
gave the best result with naive Bayes (though, this does not have to be the best setting for the
logistic regression). For each of the two settings, run 9-fold cross-validation and calculate the mean
accuracy. Compare the results in a 2x2 table where one axis is Naive Bayes vs. Logistic Regression
and the other axis is default settings vs. earlier best settings for CountVectorizer. Write a few
sentences where you discuss what you see from the table.

Deliveries: Code and results of running the code as described. The 2x2 table. Interpretation of
the table.

1.4 The end
To fullfill a series of experiments, we would normally choose the best classifier after the development
stage and test it on the final test set. But we think this suffice for this mandatory assignment.
Moreover, we would like to run some more experiments in the future on the development data,
before we contaminate them.

5

	IN4080 2020, Mandatory assignment 1, part B
	About the assignment
	Goal of part A

	Ex 1 First classifier and vectorization (10 points)
	1a) Inititial classifier
	1b) Parameters of the vectorizer

	Ex 2 n-fold cross-validation (12 points)
	2a)
	2b)

	Ex 3 Logistic Regression (8 points)
	The end

