
1

IN4080 2020, Mandatory assignment 2, part B
Your answer should be delivered in devilry.ifi.uio.no no later than Friday, 9 October at 23:59

About the assignment
Mandatory assignment 2 has two parts, A and B. You should answer both parts, all questions. This is

part B. For general requirements, including point system and delivery formats, see part 1 . For all

exercises, deliver answers to all questions and code where you apply code.

Goals of part B
In this part we will you use the gensim package to familiarize ourselves with word embeddings and

word2vec. You will get more experience with

 vector representations of words

 cosine distance and similarity

 semantic relationships including analogies

 training embeddings

 evaluating embeddings

 application of embeddings in text classification

Getting started with gensim
You should have gensim available in the in4080 environment on your own machine if you have

followed the installation instructions

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h20/Programming%20environment

It should work at the linux machines in the IFI terminal rooms. For remote login, gensim will not work

with login.ifi.uio.no. It should work with remote login via VDI

https://www.uio.no/tjenester/it/maskin/vdi/. Be aware that you might get problems with disk space

on the IFI machines if you download large models.

You find information on gensim at the webpage https://radimrehurek.com/gensim/index.html. To

get started, consider the Word2Vec Model tutorial on the documentation page,

https://radimrehurek.com/gensim/auto_examples/index.html . Follow the first steps up to Training

Your Own Model. In particular, download and install the 'word2vec-google-news-300'. (If you get

problems with disk space, choose another, smaller model, e.g. ‘glove-wiki-gigaword-100’.) By the

way, take a look at the page https://github.com/RaRe-Technologies/gensim-data and try to grasp

how large amounts of texts that have been used for training these models.

Exercise 1 Basics (8 points)
a) How many different words are there in the model? With so many words, how come that the

‘cameroon’ example fails?

b) Implement a function for calculating the norm (the length) of an (embedding) vector, and a

function for calculating the cosine between two vectors.

c) Calculate the cosine between the vectors for ‘king’ and ‘queen’ and check you get the same as by

<model>.similarity(‘king’, ‘queen’)

https://www.uio.no/studier/emner/matnat/ifi/IN4080/h20/Programming%20environment
https://www.uio.no/tjenester/it/maskin/vdi/
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/auto_examples/index.html
https://github.com/RaRe-Technologies/gensim-data

2

Exercise 2 Built in functions (5 points)
There are several built-in functions that let you inspect semantic properties of the embeddings. The

most_similar lets you find the nearest neighbor to one or more words.

print(wv.most_similar('car', topn=5))

print(wv.most_similar(positive=['car', 'minivan'], topn=5))

a) It is also the tool for testing analogies, e.g.

“Norway is to Oslo as Sweden is to …”

as

print(wv.most_similar(positive=['Oslo', 'Sweden'],

 negative = ['Norway'], topn=5))

Try a few analogy tests like

“ king is to man as queen is to …”

“ king is to queen as man is to …”

“cat is to kitten as dog is to …”

Add four more examples of your choice. Report the results of the tests. Are the results as expected?

b) To understand the method a little better, we can try to follow the recipe more directly. Try

a = wv['king'] + wv['woman'] - wv['man']

and calculate the cosine between a and the vectors for queen, woman, man, king. You may also

calculate the

wv.similar_by_vector(a)

What does this show regarding how the most_similar works?

c) Play around with wv.doesnt_match, e.g.

print(wv.doesnt_match(['Norway', 'Denmark', 'Finland',

 'Sweden', 'Spain', 'Stockholm']))

Make at least two more examples where the result match human evaluation and two examples

where they do not match. Explain!

Exercise 3 Training a toy model (5 points)
a) Train a word2vec model on the Brown corpus. Follow the recipe from the tutorial, the section

Training Your Own Model. You may import the corpus from NLTK by brown.sents(). Beware that this

is a toy example. The Brown corpus is too small for training good models. How many times larger is

the Google news corpus compared to the Brown corpus?

b) We will compare the Brown model to the 'word2vec-google-news-300'. Try to find the 10 nearest

words first to car and then to queen in the two models. What do the examples reveal about the two

training corpora?

c) Inspect the trained Brown model on some of the examples from exercise 2. Does it yield the same

results on the analogy tests as the model in exercise 2?

3

Exercise 4 Evaluation (5 points)
Gensim comes with several methods for evaluation, and also standard datasets for the tests. Testsets

could be found by the tha datapath command, e.g.

path=datapath('questions-words.txt')

One test you may use is to see how well the model perform on the Google analogy test datset. This

can be run by

<model>.evaluate_word_analogies(path)

Report the key numbers, and try to understand what they mean.

To compare 'word2vec-google-news-300' to the Brown embeddings is not too interesting. The

difference between them is too large. A test like this becomes more interesting if you try to compare

'word2vec-google-news-300' to e.g. ‘glove-wiki-gigaword-300’ or you want to inspect the effect of

the length of the embeddings by comparing ‘glove-wiki-gigaword-300’ and ‘glove-wiki-gigaword-

100’.

Exercise 5 Application (12 points)
We will try a simple example of applying word embeddings to an NLP task. We consider text

classification. We will use the same movie dataset from NLTK as we used in Mandatory assignment

1B, with the same split as we used there. Thereby, we may compare the results with the results from

Mandatory 1.

We will consider a document as a bag of words. The word order and sentence structure will be

ignored. Each word can be represented by its embedding. But how should a document be

represented? The easiest is to use the “semantic fingerprint”, which means representing the

document by the average vector of its words.

a) Train and test a logistic regression classifier as described. Tune the C parameter (regularization, cf.

Mandatory 2.A). Report the results from the tuning in a table. How does this classifier perform

compared to your results from Mandatory assignment 1?

b) In this task, one could either use the document vectors directly, or normalize the length of each

document vector to unit length before classifying. Try both options and compare the results.

c) In general, embeddings are used together with neural networks. Scikit-learn provides a simple

multi-layered neural network classifier.

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

Rerun the classification experiment with this classifier. Try various activation functions and report the

results for the various activation functions in a table.

Warning! When using neural networks and embeddings for word classification, you would use more

elaborate models than the simple bag-of-words model, e.g. convolutional networks or recurrent

networks which take word order into consideration.

END of Mandatory 2

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html

