
IN4080 Autumn 2020, Assignment 3

Pierre Lison, plison@nr.no

October 12, 2020

Practical details

Your answer shouldbedelivered in devilryno later than Friday, November 6 at 23:59.
Mandatory assignment 3 consists of three parts. In Part 1, you will develop a chatbot

model based on a Dual Encoder architecture (40 points). In Part 2, you will implement
a simple silence detector using speech processing (35 points). Finally, Part 3 will help
you understand some core concepts in dialogue management through the construction
of a very simple, simulated talking elevator (25 points).

You should answer all three parts. You are required to get at least 60 points to pass.
The most important is that you try to answer each question (possibly with some mis-
takes), to help you gain a better and more concrete understanding of the topics covered
during the lectures.

1. We assume that you have read and are familiar with IFI’s requirements and guide-
lines for mandatory assignments, see here and here.

2. This is an individual assignment. You should not deliver joint submissions.

3. You may redeliver in Devilry before the deadline, but include all files in the last
delivery. Only the last delivery will be read! If you deliver more than one file, put
them into a zip-archive.

4. The preferred format for the assignment is a Jupyter notebook containing both
your code and explanations about the steps you followed. The explanations are at
least as important as the code itself!

5. Name your submission your username in4080 mandatory 3

Important note

You can work on this assignment either on the IFI machines or on your own com-
puter. But note that this assignment requires packages that are not part of the
version of Anaconda installed by default on the IFI machines, so you should add
the following to your environment variable if you work on IFI machines:

1

https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi- mandatory.html
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi- guidelines.html

export PATH=/hom/plison/anaconda3/bin/:$PATH

If you are using the VDI solution put in place by the department, note that the
directory will not be visible from there – but you can copy the Anaconda directory
to your home directory using ssh and then run Python from that copy.
If you wish to work on your own private computer, you can install the necessary
packages through pip install tensorflow==2.3.0 tensorflor-text==2.3.0

tensorflow-hub glog and conda install tk. Send us an email if you run into
problems. Note that tensorflow-text (required to run the utterance encoder of
Part 1) is currently not supported on Windows.

Technical tip: Some of the tasks in this assignment will require you to extend
methods in classes that are already partly implement. In order to implement
those methods directly within a Jupyter notebook, you can use the function
setattr to attach a method to a given class:

class A:

pass

a = A()

def foo(self):

print(’hello world!’)

setattr(A, ’foo’, foo)

a.foo() # hello world!

Using this simple trick, you can extend classes defined in external files directly
from Jupyter, without having to edit the file. This way, you can deliver the full
assignment in the form of a single Jupyter notebook.

Part 1: A data-driven chatbot

We will build a retrieval-based chatbot based on a dialogue corpus of movie and TV
subtitles. More specifically, we will rely on a so-called dual encoder model. In this model,
both the user utterance (called the “context”) and the chatbot response are converted
into embeddings, and the dot product of these two vectors can be seen as a numerical
score that expresses how good the response is for the provided context. In other words,
given a user utterance, we first compute its embedding, and then compute its dot prod-
uct against all possible responses (represented by their respective embeddings). We
can then simply take the response with the highest score. See Fig. 1 for an illustration.

Have a look at the code in the file chatbot.py, where three methods should be im-
plemented. We’ll work with a dataset of movie and TV subtitles for English from the

2

Where are you ?

Over there !

Utterance encoder
(context)

Utterance encoder
(response)

Dot product
uc ∙ ur

ur

uc

(= score expressing
how good/appropriate
the response is for the
given context)

Figure 1: Dual encoder architecture.

OpenSubtitles dataset1, and restricted for this assignment to comedies.
The dataset is in the (compressed) file data/en-comedy.txt.gz. The data contains

one line per utterance. Dialogues from different movies or TV series are separated by
lines starting with ###.

Basic system

The first task will be to read through the dataset in order to extract pairs of (context,
response) utterances. But we want to limit our extract to “high-quality” pairs, and
discard pairs that contain text that is not part of a dialogue, such as subtitles indicating
“(music in background)”. We want to enforce the following criteria:

• The two utterances should be consecutive, and part of the same movie/TV series.
• ### delimiters between movies or TV series should be discarded.
• Pairs in which one string contains parentheses, brackets, colons, semi-colons or

double quotes should be discarded.
• Pairs in which one string is entirely in uppercase should be discarded.
• Pairs in which one string contains more than 10 words should be discarded.
• Pairs in which one string contains a first name should be discarded (see the JSON

file FIRST NAMES to detect those), as those are typically names of characters occur-
ring in the movie or TV series.

If you wish, you can add your own criteria to further enhance the quality of the
(context, response) pairs.

1See http://opus.nlpl.eu/OpenSubtitles-v2018.php and Lison and Tiedemann (2016); Lison
et al. (2018) for details on this corpus.

3

http://opus.nlpl.eu/OpenSubtitles-v2018.php

Task 1
Implement the method extract pairs that extracts a list of (context, response)
pairs, where the context and response are strings, ensuring that the aforemen-
tioned criteria are satisfied.

Once Task 1 is complete, you can load your chatbot with chatbot.Chatbot(). The
initialisation will automatically compute embeddings for all the responses in the ex-
tracted pairs. These embeddings are computed using ConveRT, which is a deep, pre-
trained utterance encoder described in Henderson et al. (2019). I recommend you to
have a look at the paper if you wish to know more about this model.

Note that the computation of those embeddings will take a few minutes (perhaps
up to half an hour depending on your machine). While working on this assignment,
it may be useful to store the resulting matrix in a file to avoid having to recompute it
every single time you load the chatbot.

The next step is then to implement the method that, given a new user utterance, will
select the most appropriate response.

Task 2
Implement the method get response that takes a new user input and returns the
string with the best response according to the model. The best response should
be selected from the set of responses extracted in the (context, response) pairs
from Task 1. To score the response, simply compute the dot product between
the (context) embedding for the user input and the possible responses. The best
response is then the one yielding the largest value for this dot product.

You can then test how your chatbot works on some utterances such as “Who are
you?”, “How old are you?” “Where are you?”, “Are you stupid?”, “Did you kill him?”.

Technical tip: When working with numpy arrays/matrices, you should always try
to avoid going through explicit loops, as looping over values of a numpy array
is highly inefficient. For instance, instead of computing the dot product of each
response one after the other (within a loop), you can compute the dot product
of all responses in one single dot product operation – which is way more effi-
cient! See https://realpython.com/numpy-array-programming/ for more de-
tails on the best way to work with numpy arrays.

Fine-tuning

If you have correctly implemented Task 1 and 2, your chatbot should now be able to
come with reasonable/funny answers to user utterances. But the current chatbot has
one limitation, namely that the utterance encoder from conveRT is not adapted to the

4

https://realpython.com/numpy-array-programming/

kind of dialogue found in subtitles. So it would be useful to fine-tune the model on
domain-specific data, namely the (context, response) pairs we have extracted.

For this fine-tuning, we will simply add a single feed-forward (“dense”) layer con-
sisting of a linear transformation of the embeddings followed by a non-linear activation
function such as a reLU (rectified linear unit). The parameters (=weights) of this layer
will be learned based on the (context, response) pairs. In other words, the context
and response utterances will first be converted into embeddings using ConveRT, but the
response vectors will be transformed through a learned layer before being applied to
compute the dot product. See Fig. 2 for an illustration.

Where are you ?

Over there !

Utterance encoder
(context)

Utterance encoder
(response)

Dot product
σ(uc ∙ u'r)

ur

uc

u'r

u'r = a(W ur)
where W is a matrix of (learned)
weights and a is an activation
function such as reLU

Figure 2: Dual encoder architecture with an additional feed-forward layer to fine-tune
the model.

Much of the code for this fine tuning is already implemented in the method fine tune,
but the missing part is the code for preparing the training data.

Task 3
Implement the method get training data that create a training set for the
fine-tuning. This training set will be based on the extracted (context, response)
pairs. The training set will need to include both positive examples (context
and response embeddings corresponding to actual observed responses, and
that should therefore have a high score) and negative examples (context and
response embeddings that are not related and should therefore have a low
score). The output for the positive examples should be 1 and the output for the
negative examples should be 0. For the negative examples, the easiest is to take
the embedding of another random response from the extracted pairs.

Once you are done, run the fine tune method to fit the feed-forward layer to your
examples. The method will loop 10 times through your training set. Once training
is complete, the matrix containing the response embeddings will be transformed by
applying the learned layer to the ConveRT embeddings.

5

You can test your chatbot again with the same examples as before. If the training set
you have constructed is correct, your chatbot should now provide different responses
(hopefully even better than the baseline system).

Part 2: Speech processing

In this section, we will learn how we can perform some basic speech processing using
operations on numpy arrays! We’ll work with wav files. A wav file is technically quite
simple and encodes a sequence of integers, where each integer express the magnitude
of the signal at a given time slice. The number of time slices per second is defined in the
frame rate, which is often 8kHz, 16kHz or 44.1kHz. So a file with 4 seconds of audio
using a frame rate of 16 kHz will have a sequence of 64 000 integers. The number of bits
used to encode these integers may be 8-bit, 16-bit or 32-bit (more bits means that the
quantization of the signal at each time slice will be more precise, as there will be more
levels). Finally, a wav file may be either mono (one single audio channel) or stereo (two
distinct audio channels, each with its sequence of integers).

To read the audio data from a wav file, you can use scipy:

import scipy.io.wavfile

fs, data = scipy.io.wavfile.read("data/excerpt.wav")

data = data.astype(np.int32)

where data is the numpy array containing the actual audio data, and fs is the frame
rate. Note that I am converting the integers into 32-bit to avoid running into overflow
problems later on (i.e. when squaring the values).

Task 4
• Plot (using matplotlib.pyplot) the waveform for the full audio clip.

• For speech analysis, looking directly at the signal magnitude is typically
not very useful, as we can’t typically distinguish speech sounds based on
the waveform. A representation of the signal that is much more amenable
to speech analysis is the spectrogram, which represents the spectrum of fre-
quencies of a signal as it varies with time.
Plot the spectrogram of the first second of the audio clip, using the function
matplotlib.pyplot.specgram.

Now, let’s say we wish to remove periods of silence from the audio clip. There are
many methods to detect silence (including deep neural networks), but we will rely here
on a simple calculation based on the energy of the signal, which is the sum of the square
of the magnitudes for each value within a frame:

E =
N∑
i=1

X[t]2 (1)

6

Length of frame
= 200 ms.

Offset
= 100 ms

Waveform
(frame rate = 16 kHz,
which means 16000
values per sec)

Figure 3: Moving window on audio data.

Task 5
• Loop on your audio data by moving a frame of 200 ms. with a step of 100

ms., as shown in Fig. 3.

• For each frame, compute the energy as in Eq. (1) and store the result.

• Now that we have the energy for each frame of the audio clip, we can cal-
culate the mean energy per frame, and define silent frames as frames that
have less than 1/10 of this mean energy. Determine which frame is defined
as silent according to this definition.

• Show on the plot of the waveform which segment is determined as silent,
using the method matplotlib.pyplot.hlines.

• If your calculations are correct, you will notice that the method has marked
many short, isolated segments (e.g. in the middle of a word) as silent. We
want to avoid this of course, so we will rely on a stricter requirement to
define whether a frame should be considered silent or not: we only mark a
frame as silent if the frame and all of its neighbouring frames have less than 1/10
of the mean energy. We can defines the neighbourhood of a frame as the
five frames before and the five frames after.

• Show again on the plot of the waveform which segment is determined as
silent using the stricter definition above.

• (Optional) Modify the audio data by cutting out frames marked as silent,
and using the method scipy.io.wavfile.write to write back the data
into a wav file. Don’t forget to convert back the data array to 16-bit using
astype(np.int16) before saving the data to the wav file.

7

For the bravest amongst you: Until now, we have only looked at the detection of
silent frames. But what we are truly interested in is to distinguish between speech sound
and the rest, which may be either silence or non-speech sounds (noise). For this, we
need to analyse the audio in the frequency domain and look at which range of frequencies
is most active within a given frame.

How do we achieve this? The key is to apply a Fast Fourier Transform (FFT) to go
from an audio signal expressed in the time domain to its corresponding representation
in the frequency domain. We can then look at frequencies in the speech range (typ-
ically between 300 Hz and 3000 Hz) and compute the total energy associated to that
range. You can look here to know more about how to use numpy and scipy to perform
such operations. This question is not part of the obligatory assignment, but feel free to
experiment with it if you are interested in audio processing. Students that manage to
come with a solution for detecting silence and non-speech frames using FFT will get a
bonus of +15 points.

Part 3: Talking Elevator

Let’s assume you wish to integrate a (spoken) conversational interface to one of the
elevators in the IFI building. The elevator should include the following functions:

• It should greet the user and ask them where they wish to go.

• If the user express a wish to go to floor X , the elevator should go to that floor. The
interface should allow for several ways to express a given intent, such as “Please
go to the Xth floor” or “Floor X , please”.

• The user requests can also be relative, for instance “Go one floor up”. The interface
should also be able to answer questions such as “Which floor are we in?”.

• The elevator should provide grounding feedback to the user. For instance, it should
respond “Ok, going to the Xth floor” after a user request to move to X .

• The elevator should handle misunderstandings and uncertainties, e.g. by asking
the user to repeat, or asking the user to confirm if the intent is uncertain (say,
when its confidence score is lower than 0.7).

• The elevator should also allow the user to ask where the office of a given employee
is located. For instance, the user could ask “where is Erik Velldal’s office?”, and the
elevator would provide a response such as “The office of Erik Velldal is on the 4th
floor. Do you wish to go there?”.

• If the user asks the elevator to stop (or if the user says “no” after a grounding
feedback “Ok, going to floor X”), the elevator should stop, and ask for clarification
regarding the actual user intent.

You will find in elevator.py an implementation of a simulated elevator in which
you can test the behaviour of your conversational interface in an interactive manner.
Fig. 4 shows the graphical user interface developed for this simulated elevator.

8

https://www.oreilly.com/library/view/elegant-scipy/9781491922927/ch04.html

Figure 4: Simulated talking elevator.

To also simulate the occurrence of speech recognition errors (even though the ac-
tual interface is text based), the implementation introduces some artificial noise into
the user utterances (e.g. swapping some random letters from time to time). Each user
utterance comes associated with a confidence score (which would come from a speech
recogniser in a real system, but is here also artificially generated).

Task 6
Implement the method process(user message, confidence score) in order to
respond to the user (both verbally and non-verbally, through physical move-
ments) such that the requirements above are satisfied.
Regarding the questions about the office location of particular employees, you
can limit yourself to the offices of 5-6 employees at IFI.
To interpret the user request, the easiest is to rely on handcrafted regular expres-
sions to detect specific patterns (such as “go to floor X”). But if you prefer data-
driven approaches, you may alternatively rely on a classification model learned
from a list of labelled examples. You are free to decide on the best way to imple-
ment your system, as long as you motivate your design choices.
Your implementation will likely require the introduction of new instance vari-
ables to keep track of some aspects of the dialogue state (such as the last user
request or the last system question). Your implementation should take into ac-
count the provided confidence score (if the score is too low, the system should
seek to clarify the user’s request). It is up to you to decide what it the best way to
handle such uncertainties.
For the actual response, the system can call the methods go to (to go to a
particular floor) and respond (to give a verbal answer to the user). Some user
requests might trigger both verbal and non-verbal responses. The elevator can
be stopped during a movement by setting the variable urgent stop to True.

9

There is no obvious right/wrong answer for this exercise – the main goal is to reflect
on how to design conversational interfaces in a sensible manner – in particular when it
comes to handling uncertainties and potential misunderstandings.

References

Henderson, M., Casanueva, I., Mrkšić, N., Su, P.-H., Vulić, I., et al. (2019). ConveRT: Ef-
ficient and accurate conversational representations from transformers. arXiv preprint
arXiv:1911.03688.

Lison, P. and Tiedemann, J. (2016). Opensubtitles2016: Extracting large parallel cor-
pora from movie and tv subtitles. In Proceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016).

Lison, P., Tiedemann, J., and Kouylekov, M. (2018). OpenSubtitles 2018: Statistical
rescoring of sentence alignments in large, noisy parallel corpora. In Proceedings of
the 11th International Conference on Language Resources and Evaluation (LREC-2018),
Miyazaki, Japan.

10

