

Dialogue systems & chatbots

Pierre Lison

IN4080: Natural Language Processing (Fall 2020)

5.10.2020

The next 3 weeks

What are they? What applications?

How does (human-human) dialogue actually work?

Dialogue systems

What are the core *components* of dialogue systems?
Can they be learned from *data*?

How are dialogue systems designed, built and evaluated?

Plan

- ► 5/10 (today):
 - What is dialogue?
 - Basic chatbot models
- ▶ 12/10 (next Monday):
 - Chatbots (cont') & NLU
 - Short intro to speech recognition
- ► 19/10 (in two weeks):
 - Dialogue management
 - System design & evaluation

3

Assignment

- Oblig 3 starting next week
 - Deadline: november 6

- Three parts:
 - Chatbots: build a data-driven chatbot trained on movie and TV subtitles
 - Speech processing: implement a simple voice activity detector
 - Dialogue management: build a (simulated) talking elevator

Material

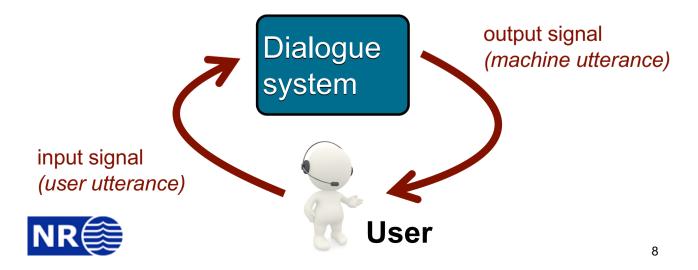
- The slides from the 3 lectures
- Chapter 26 of the upcoming version (v3) of Jurafsky & Martin's SLP book
 - & part of chapter 27 on phonetics
 - & dialog chapter from previous J&M edition
- + a few additional references listed in the weekly syllabus for the course

5

Plan for today

- A short intro to dialogue systems
- What is human dialogue?
- Basic chatbot models

Plan for today


- ▶ A short intro to dialogue systems
- What is human dialogue?
- Basic chatbot models

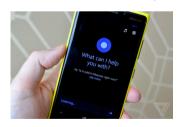
7

Dialogue systems?

A dialogue system is an artificial agent designed to interact with humans using (spoken or text-based) natural language

What for?

► Highly intuitive: no need for training or expertise: all you need is to talk/write!


- ► Touch-based interfaces may be inadequate, cumbersome or dangerous (car driving)
- Language is the ideal medium to express complex ideas in a flexible and efficient way

9

Applications

Mobile virtual assistants (Siri, Cortana, etc.)

Smart home environments

In-car navigation & control

Service robots

Tutoring systems

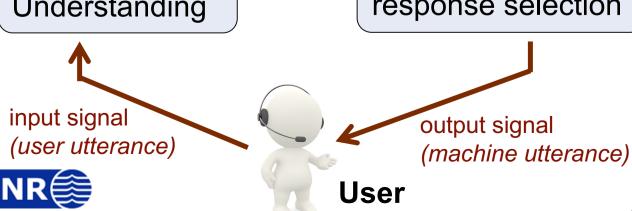
Chatbots

10

Why is it interesting?

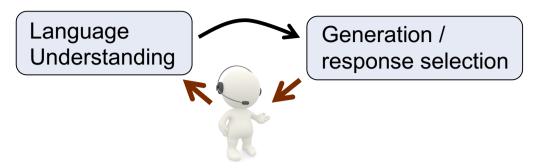
 Major application area for NLP (with large R&D investments)

- Study language «as a whole», as it is used in real interactions
- Playground for key Al problems:
 - Sense, reason and act under uncertainty
 - Capture the context & other agents


11

Basic architecture

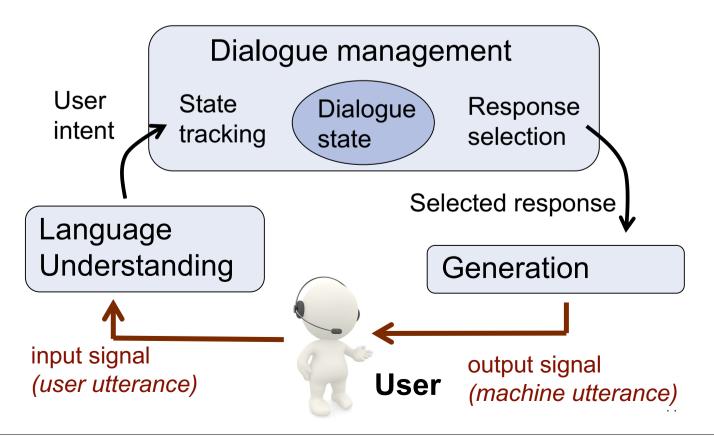
High-level representation of user intent (category, embedding, etc.)


Language Understanding

Generation / response selection

12

Basic architecture


This pipeline is often used for chatbots

- Main limitation: no management of the dialogue itself (beyond current utterance)
- Most appropriate for short interactions

13

Basic architecture

Outline

- ► In two weeks, we'll look at dialogue management in more details
 - How to integrate the external «context»?
 - How to handle multiple (i.e. non-verbal) modalities?
 - How to design, build and evaluate dialogue systems?
- But let's first have a look at how human conversation actually works

15

Plan for today

- A short intro to dialogue systems
- What is human dialogue?

What is dialogue?

- Spoken ("verbal") + possibly non-verbal interaction between two or more participants
- Dialogue is a joint, social activity, serving one or several purposes for the participants
- What does it mean to view dialogue as a joint activity?

17

Turn-taking

- Dialogue participants take turns
 - Turn = continuous contribution from one speaker
 - Turn-taking is a resource allocation problem
- Surprisingly fluid in normal conversations:
 - Minimise both gaps (no speaker) and overlaps (more than one speaker)
 - Interval between speakers is around 250 ms

Turn-taking

- How are turns taken or released?
- Markers for turn boundaries:
 - Complete syntactic/semantic unit?
 - Dialogue structure (greetings → greetings, question → answer)
 - Intonation (falling intonation signals that speaker if finished)
 - Non-verbal cues (eye gaze, gestures)
 - Silence & hesitation markers (unfilled pauses ≠ filled pauses)
 - Social conventions

Your Turn

19

Example of turn-taking

Speaker I:	han vil bo i skogen ?
Speaker 2:	# altså hvis jeg hadde kommet og sagt " skal vi flytte i skogen ? " så hadde han sagt ja
Speaker I:	mm
Speaker 2:	men jeg vil ikke bo i skogen
Speaker I:	nei det skjønner jeg
Speaker 2:	så vi må jo finne et sted som er mellomting og det jeg vil ikke bo utpå landet # i hvilken som helst (uforståelig)
Speaker I:	* men det kommer jo an på hvor i skogen da

Dialogue acts

- Each utterance is an action performed by the speaker
 - The speaker has a specific goal (which might be only to establish or maintain *rapport* with the listeners)
 - The utterance produces specific effects upon the listeners, or the world at large
 - «Language as action» perspective

J.L. Austin (1911-1960) philosopher of language

J. Searle (1932, -) philosopher of language

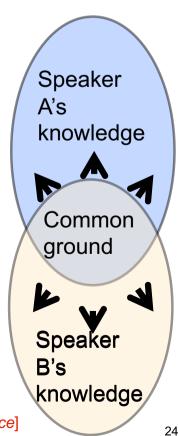
[J. L. Austin (1955), How to do things with words.]

21

Dialogue acts

- The mother reaction has a specific purpose
 - Communicating her suprise/anger, and stop Calvin
- Her question will trigger some effects:
 - A psychological reaction from Calvin (e.g. surprise)
 - Possibly a real-world effect as well (Calvin stopping his action)

Searle's taxonomy


- ► Assertives: committing the speaker to the truth of a proposition. E.g.: *«The exam will take place on November 25»*
- ▶ **Directives**: attempts by the speaker to get the addressee to do something. E.g.: *«could you please clean up your room?»*
- ► Commissives: committing the speaker to some future course of action. E.g.: «I promise I'll clean up my room».
- ► **Expressives**: expressing the psychological state of the speaker. E.g.: *«thanks for cleaning up your room».*
- ▶ **Declaratives**: bringing about a different state of the world by the utterance. E.g.: *«You're fired».*

23

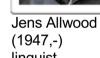
Grounding

- Dialogue is a joint, collaborative process between the participants
 - Need to ensure mutual understanding
- Gradual expansion and refinement of common ground
 - Common ground = shared knowledge

[H. H. Clark and E. F. Schaefer (1989), «Contributing to discourse», in *Cognitive Science*]

Grounding

- Grounding is the process of gradually augmenting the common ground during the interaction
 - Variety of signals and strategies


Herbert H. Clark psycholinguist

Multiple levels:

- Contact (attention to interlocutor)
- Perception (detection of utterance)
- Understanding (comprehension of utterance)
- Attitudinal reactions

linguist

25

[Jens Allwood (1992), «On discourse cohesion», in Gothenburg papers in Theoretical Linguistics.]

Grounding acts

- Backchannels: «uh-uh», «mm», «yeah»
- Explicit feedback: «ja det skjønner jeg»
- Implicit feedback: A: «I want to fly to Rome» → B: «there are two flights to Rome on Wednesday: ... »
- Clarification strategies: «Did you mean to Rome or to Goa?», «could you confirm that ...»
- Repair strategies: «OK, you're not going to Goa. Where do you want to go then?»

Examples of grounding

Speaker 1:	vi vasker den hver dag vi # vi har mopp
Speaker 2:	mm ## ja det er fort og faren til M27 legger nytt teppe han # det er gjort på to timer ## så det er fort gjort
Speaker 1:	ja ## da er ikke noe sak
Speaker 2:	vi har skifta teppe tre ganger allerede han gjør
	det gratis
Speaker I:	hæ?
Speaker 2:	vi har skifta teppe tre ganger og # han han
Speaker I:	* jeg skjønner ikke hvorfor dere har teppe
Speaker 2:	jeg syns det var rart jeg òg # men e # (sibilant)

[«Norske talespråkskorpus - Oslo delen» (NoTa), collected and annotated by the Tekstlaboratoriet]

27

Examples of grounding

Speaker I:	e # nei det er ikke mang	e
Speaker 2:	ja * nei	
Speaker I:	men heldigvis så var ikke	Petter Rudi tatt ut denne gangen da
Speaker 2:	ja # jeg skjønner ikke hva	a han skal på landslaget å gjøre
Speaker I:	* nei han har ingen t	ing på landslaget
Speaker 2:	nei # definitivt	\
Speaker I:	å gjøre # han er ubrukelig	
Speaker 2:	* moldensere	implicit feedback
Speaker I:	hm?	(repetition of landslaget)
Speaker 2:	ja disse moldenserne	clarification requests
Speaker I:	en gang til?	
Speaker 2:	disse moldenserne	
Speaker I:	* å ja (fremre klikkelyd) :	# unnskyld # jeg hørte ikke hva du sa

Grounding

- Common ground is more than «knowledge that happens to be shared by all participants»
 - The participants must also know that it is shared (i.e. know that the others know it as well)
- Given two speakers A and B, the common ground CG can be defined as :

```
\forall x, \ CG(x) \rightarrow knows(A, x)
\land \ knows(B, x)
\land \ knows(A, knows(B, x))
\land \ knows(B, knows(A, x))
\land \ knows(A, knows(B, knows(A, x)))
\land \ \dots
```


29

Conversational implicatures

 Very often, part of the meaning of utterance is not explicitly stated, but only implied

A: «Is William working today?»

B: «He has a cold»

- How can we retrieve this «suggested» meaning, and go beyond literal interpretations?
 - Need to make some assumptions about the speaker to help us infer the hidden part

Conversational implicatures

- Same idea again: dialogue as a collaborative process
- Grice's Cooperative Principle:
 - Maxim of Quality: «be truthful»
 - Maxim of Quantity: «be exactly as informative as required»
 - Maxim of Relation: «be relevant»
 - Maxim of Manner: «be clear»

Paul Grice (1913-1988) philosopher of language

[Paul Grice (1975), Logic and Conversation.]

Conversational implicatures

- Based on the cooperative principle, one can draw conversational implicatures
 - All participants are assumed to adhere to the maxims
 - If an utterance initially seems to deliberately violate a maxim, the listener will then infer additional hypotheses required to make sense of the utterance

Conversational implicatures

A: «Is William working today?»

B: «He has a cold»

- At first glance, B seems to violate the maxim of relevance
 he does not directly answer A's question
- ▶ But looking at the utterance more closely, we can read it as implying that (due to his cold) he is probably at home, and thus not working today
- ► This is because we assume that B is cooperative and wouldn't have uttered «he has a cold» if it didn't help answering A's question

33

Conversational implicatures

1

Hobbes' question is *suggesting* something about Calvin's need for schooling, without stating it explicitly

We can understand it because we assume that Hobbes' contribution is cooperative and thus relevant to the discussion

Conversational implicatures

When the cooperative maxims are violated, we can quickly notice it:

Which maxim is violated here?

35

Social interactions

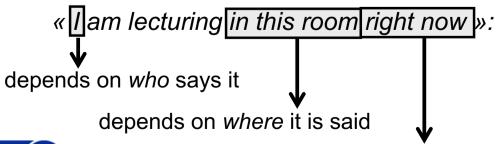
- ► Humans naturally view each other as goal-directed, intentional agents
 - Understand other agents in terms of belief, desires and intentions (theory of mind)
- ▶ But there's more: humans can jointly attend to external entities and establish shared intentions

Daniel Benett (1942, -) philosopher of mind

Michael Tomasello (1950, -) developmental psychologist

[Dennett, D (1996), *The intentional stance*.] [Tomasello, M (1999), *The cultural origins of human cognition*.]

Alignment


- ► Participants in a dialogue continuously align their mental representations
 - Notion of common ground discussed earlier
- ▶ But dialogue participants also align at a deeper level, by unconsciously imitating each other
- ► As the interaction unfolds, the participants automatically align their wording, pronunciation, speech rate, and gestures

[Garrod, S., & Pickering, M. J. (2009). Joint action, interactive alignment, and dialog. Topics in Cognitive Science] 37

Deixis

- ▶ Dialogue often *referential* to a spatio-temporal context
- ▶ Such references are called deictics
 - Related concepts: indexicals, anaphora
- ▶ The meaning of a deictic depends on the *context* in which it is uttered (including the speaker perspective)

depends on when it is said

Deictic markers

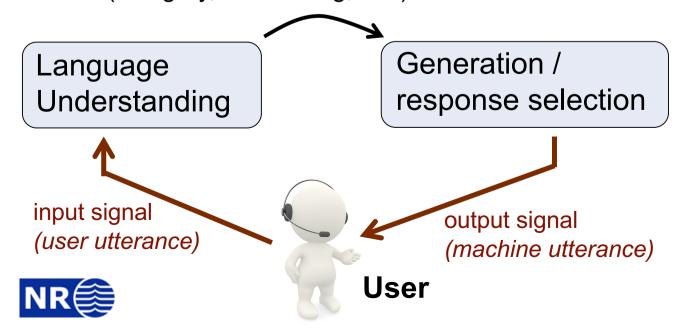
- Pronouns: «I», «you», «my», «yours»
- Adverbs of time and place: «now», «yesterday», «here», «there»
- Demonstratives: «this», «that»
- Tense markers: «he just left»
- Others: «the mug to your right», «go away!», «the other one»
- Non-verbal signs, based on gestures, gaze, etc.

39

Deixis

- ▶ Deictics can refer to virtually anything:
 - Objects: «take that mug»
 - Events: «don't do that», «this car accident was awful»
 - Persons: «You're being an idiot»
 - Abstract entities: «This methodology is flawed»
- ► Perspective is important:

Plan for today


- A short intro to dialogue systems
- ▶ What is human dialogue?
- Basic chatbot models

41

Chatbots

High-level representation of user intent (category, embedding, etc.)

Rule-based models

Pattern-action rules

```
(0 YOU 0 ME) [pattern]

→
(WHAT MAKES YOU THINK I 3 YOU) [transform]
```

► For instance:

```
You hate me
WHAT MAKES YOU THINK I HATE YOU
```


[example from D. Jurafsky]

43

IR models

- Alternatively, one can adopt a data-driven approach and learn how to respond to the user based on a dialogue corpus
- Key idea:
 - Given a user input q, find the utterance t in the dialogue corpus that is most similar to q
 - Then return as response the utterance r following t in the corpus

IR models

$$r = response \left(\underset{t \in C}{\operatorname{argmax}} \frac{q^T t}{||q||t||} \right)$$

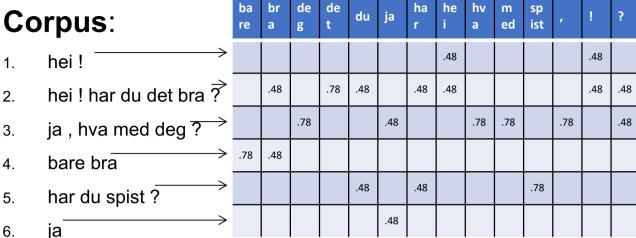
- ► How to determine which utterance is «most similar» to the actual user utterance?
 - Cosine similarity over some vectors
 - The vectors can be TF-IDF weighted words
 - Or utterance-level embeddings

45

Example

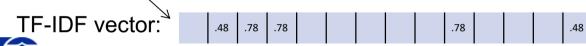
TF vectors:

Corpus:			br a	de g	de t	du	ja	ha r	he i	hv a	m ed	sp ist	,	!	?
1.	hei!								1					1	
2.	hei! har du det bra 💎		1		1	1		1	1					1	1
3.	ja , hva med deg ?			1			1			1	1		1		1
4.	bare bra	1	1												
5.	har du spist ?					1		1				1			
6.	ja						1								


Example

TF-IDF vectors:

 $\log(6) \approx 0.78$ $\log\left(\frac{6}{2}\right) \approx 0.48$


hv

Corpus:

New user utterance q: "går det bra med deg?"

ba

6.

47

Example

L	LXaIIIpie															_	$q^T t$	
	ba re	br a	de g	de t	du	ja	ha r	he i	hv a	m ed	sp ist	,	!	?		$q^T t$		q t
1.								.48					.48		\longrightarrow	0	\rightarrow	0
2.		.48		.78	.48		.48	.48					.48	.48		1.07		0.50
3.			.78			.48			.78	.78		.78		.48		1.45		0.56
4.	.78	.48														0.23		0.17
5.					.48		.48				.78					0		0
6.						.48										0		0
		.48	.78	.78						.78				.48				

Example

$$\frac{q^T t}{\|q\| \|t\|}$$

Corpus:

1.	hei!	0
2.	hei ! har du det bra ?→	0.50
3.	ja , hva med deg ? \longrightarrow	0.56
4.	bare bra>	0.17
5.	har du spist ?	0
6.	ja	0

- → The utterance closest to q in our corpus is utterance 3: "ja, hva med deg?"
- → the system should choose as response utterance 4

New user utterance q: "går det bra med deg?"

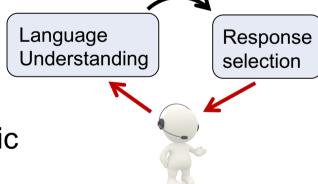
System response: "bare bra"

49

Plan for today

- A short intro to dialogue systems
- What is human dialogue?
- Basic chatbot models
- ▶ Wrap up

Summary (1)


Dialogue = joint social activity

- ► Dialogue participants take *turns*
- ► Each turn is composed of one or several *dialogue acts*

- ► Cooperation to ensure mutual understanding (gradual expansion of *common ground*)
- ► Cooperative interpretation of each other's utterances (conversational implicatures)
- ► Takes place in a *context* which is crucial for making sense of the interaction (cf. *deictics*)

Summary (2)

We also looked at basic models for chatbots:

- Rule-based systems, which map conditions (e.g. surface patterns on the user utterance) to responses
- IR-based systems searching for the most similar utterance in a dialogue corpus, and then selecting the utterance after it

Next week

- ► In the next lecture, we'll look at more advanced chatbot models
 - Other corpus-based approaches: dual encoders, sequence-to-sequence
 - NLU-based approaches (intent & slot recognition)
- + short intro to phonetics& speech recognition!

