

Chatbot models, NLU & ASR

Pierre Lison

IN4080: Natural Language
Processing (Fall 2020)

Processing (Fall 2020)

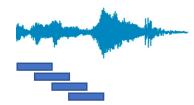
12.10.2020

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language
 Understanding (NLU) for dialogue systems
- Speech recognition

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language
 Understanding (NLU) for dialogue systems
- Speech recognition


Oblig 3

Three parts:

- Chatbot trained on movie and TV subtitles
- Silence detector in audio files

Oblig 3

- Deadline: November 6
 - Concrete delivery: Jupyter notebook
- Need to run version of Python with additional (Anaconda) packages
 - See obligatory assignment for details
- Computing the utterance embeddings in Part 1 requires some patience (or enough computational ressources)

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language
 Understanding (NLU) for dialogue systems
- Speech recognition

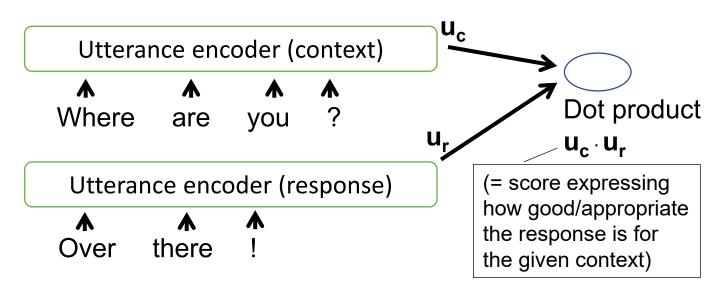
Chatbot models: recap

Rule-based models:

if (some pattern match X on user input)
then respond Y to user

► IR models using cosine similarities between vectors

$$r = response \left(\underset{t \in C}{\operatorname{argmax}} \frac{q^T t}{||q||t||} \right)$$

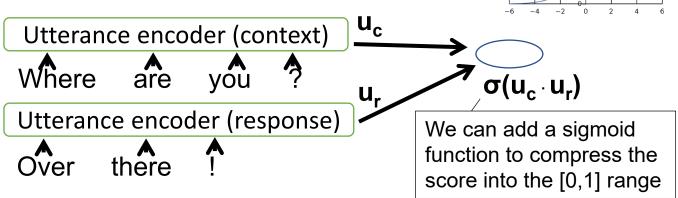

Where C is the set of utterances in dialogue corpus (in a vector representation)

and q is the user input (also in vector form)



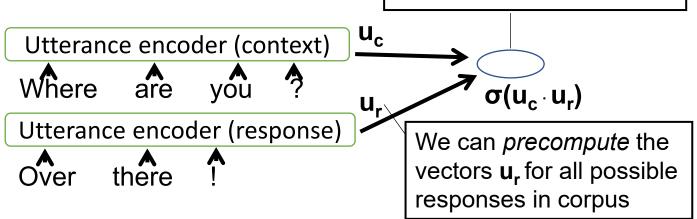
Another type of IR-based chatbots

We compute here the dot product between the user input (called "context") and a possible response



The encoders are typically deep neural networks, such as LSTMs or transformers

The two encoders often rely on a shared neural network, apart from a last transformation step that is specific for the context or response

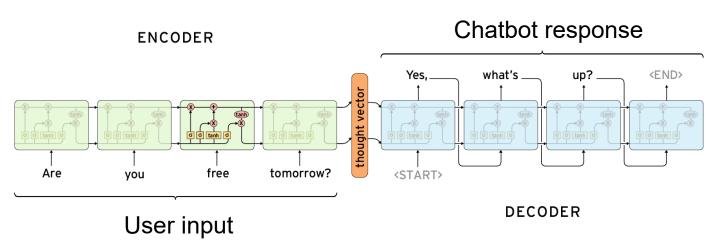

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-x}}$$

Dual encoders are trained with both *positive* and *negative* examples:

- Positive : actual consecutive pairs of utterances observed in the corpus → output=1
- Negative: random pairs of utterances → output=0

At prediction time, we search for the response with the *maximum* score

Given a new user input, we have to:


- Compute the context embeddings u_c
- Compute its dot product with all responses
- Search for the response with max score

Seq2seq models

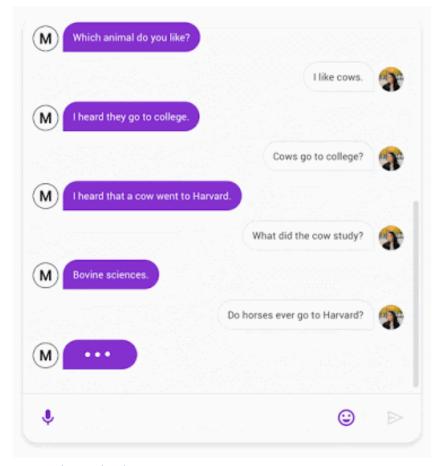
- Sequence-to-sequence models generate a response token-by-token
 - Akin to machine translation
 - Advantage: can generate «creative» responses not observed in the corpus
- ► Two steps:
 - First «encode» the input with e.g. an LSTM
 - Then «decode» the output token-by-token

Seq2seq models

NB: state-of-the-art seq2seq models use an attention mechanism (not shown here) above the recurrent layer

Seq2seq models

Interesting models for dialogue research


▶ But:

- Difficult to «control» (hard to know in advance what the system may generate)
- Lack of diversity in the responses (often stick to generic answers: «I don't know» etc.)
- Getting a seq2seq model that works reasonably well takes a lot of time (and tons of data)

Example from Meena (Google)

2.6 billion parameters, trained on 341 GB of text (public domain social media conversations)

Taking stock

Pro: Fine-grained control on interaction

Rule-based chatbots

→ Con: Difficult to build, scale and maintain

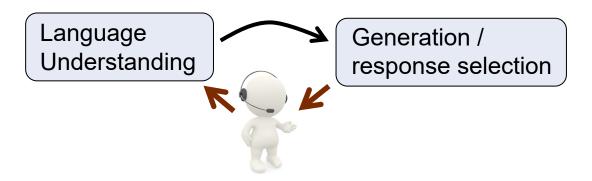
- Corpus-based chatbots
- **Pro**: Easy to build, well-formed responses

- IR approaches
- Con: Can only repeat existing responses in corpus

Seq2seq

Con: Difficult to train, hard to control, needs lots of data

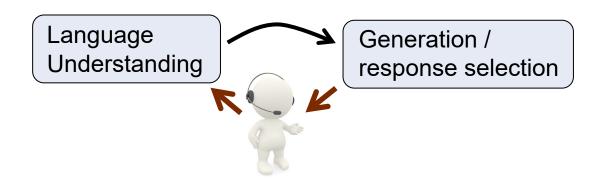
Pro: Powerful model, can generate anything


Corpus-based approaches seen so far often limited to the chart dialogues (for which we can easily crawl data)

Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

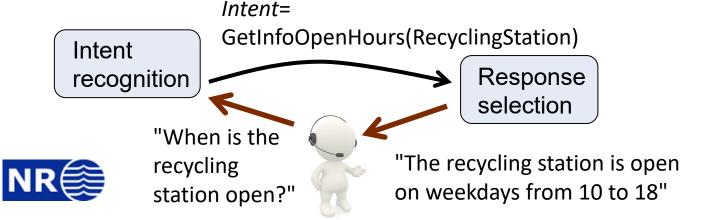
NLU-based chatbots



Can we build data-driven chatbots for taskspecific interactions (not just chit-chat)?

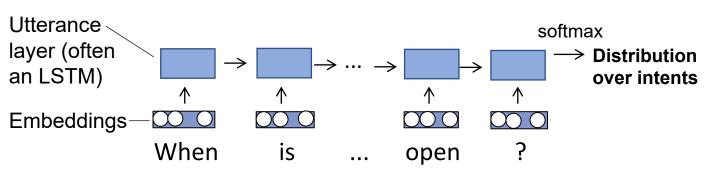
- "Standard" case for commercial chatbots
- Typically: no available task-specific data

NLU-based chatbots



- Solution: NLU as a classification task
 - From a set of (predefined) possible intents
- Response selection generally handcrafted
 - Chatbot owners want to have full control over what the chatbot actually says

Intent recognition


Goal: map user utterance to its most likely intent

- Input: sequence (of characters or tokens)
 - + possibly preceding context
- Output: intent (what the user tries to accomplish)

Intent recognition

- Many possible machine learning models
 - Convolutional, recurrent, transformers, etc

- Must collect training data: user utterances (manually) annotated with intents
 - Often done by "chatbot trainers" in industry

Small amounts of data?

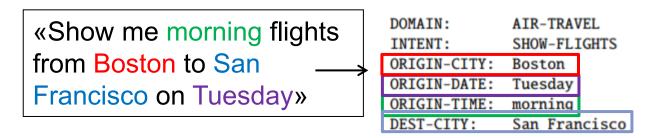
 Use transfer learning to exploit models trained on related domains

Small amounts of data?

- Use transfer learning to exploit models trained on related domains
- 2. Use *data augmentation* to generate new labelled utterances from existing ones

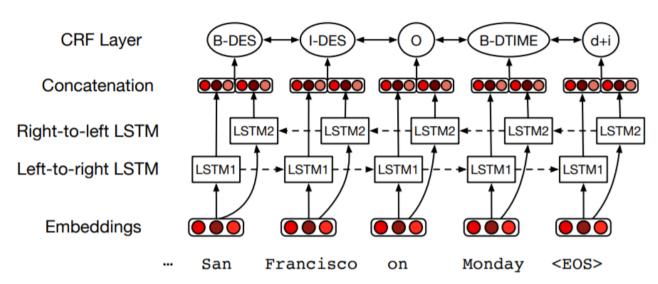
"When is the recycling ————→ GetInfoOpenHours station open?" (RecyclingStation)

Replace with synonyms


Small amounts of data?

- Use transfer learning to exploit models trained on related domains
- 2. Use *data augmentation* to generate more utterances from existing ones
- 3. Collect raw (unlabelled) utterances and use weak supervision to label those

Slot filling


In addition to intents, we also sometimes need to detect specific entities ("slots"), such as mentions of places or times

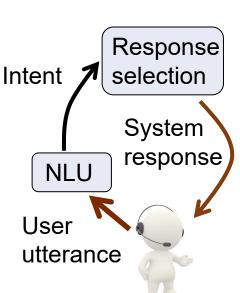
- Slots are domain-specific
 - And so are the ontologies listing all possible values for each slot

Slot filling

Can be framed as a sequence labelling task (as in NER), using e.g. **BIO** schemes

Response selection

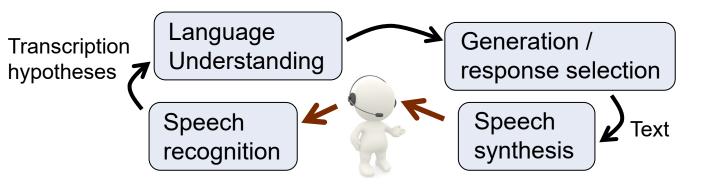
Given an intent, how to create a response?


In commercial systems, system responses are typically written by hand

 Possibly in templated form, i.e. "{Place} is open from {Start-time} to {Close-time}"

But data-driven generation methods also exists

[see e.g. Garbacea & Mei (2020), "Neural Language Generation: Formulation, Methods, and Evaluation"]

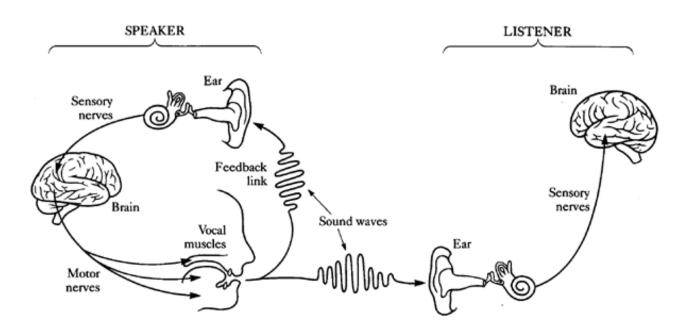


Plan for today

- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU) for dialogue systems
- Speech recognition

Spoken dialogue systems

Spoken interfaces add a layer of complexity

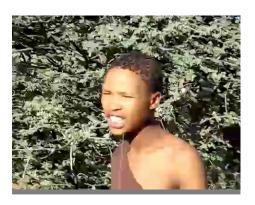

- ▶ Need to handle uncertainties, ASR errors etc.
- Speech communicates more than just words (intonation, emotions in voice, etc.)
- Need to handle turn-taking

A difficult problem!

The speech chain

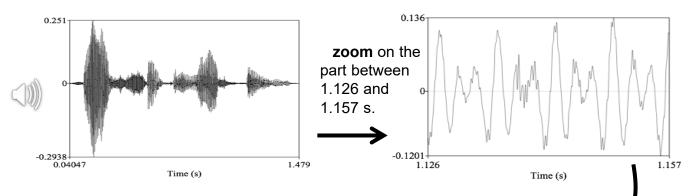
Speech production

- ► Sounds are *variations in air pressure*
- ► How are they produced?
 - An air supply: the lungs (we usually speak by breathing out)
 - A sound source setting the air in motion (e.g. vibrating) in ways relevant to speech production: the *larynx*, in which the *vocal folds* are located
 - A set of 3 filters modulating the sound: the pharynx, the oral tract (teeth, tongue, palate,lips, etc.) & the nasal tract



Speech production

Visualisation of the vocal tract via *magnetic* resonance imaging [MRI]:



NB: A few languages also rely on sounds not produced by vibration of vocal folds, such as *click languages* (e.g. Khoisan family in south-east Africa):

Speech perception

A (speech) sound is a variation of air pressure

- This variation originates from the speaker's speech organs
- We can plot a wave showing the changes in air pressure over time (zero value being the normal air pressure)

About 4 cycles in the waveform, which means a ◄ frequency of about 4/0.03 ≈129 Hz

Important measures

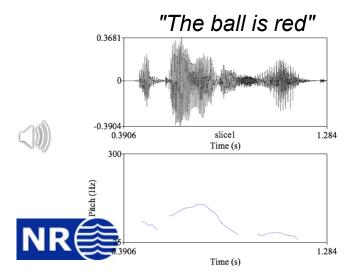
- 1. The **fundamental frequency F**₀: lowest frequency of the sound wave, corresponding to the speed of vibration of the vocal folds (between 85-180 Hz for male voices and 165-255 Hz for female voices)
- 2. The **intensity**: the signal power normalised to the human auditory threshold, measured in **dB** (decibels):

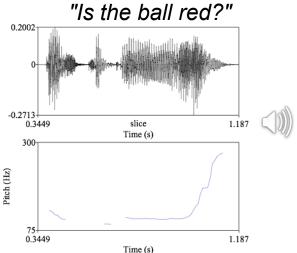
Intensity = 10
$$\log_{10} \frac{\text{Power}}{P_0} = 10 \log_{10} \frac{1}{NP_0} \sum_{i=1}^{N} y(t_i)^2$$

for a sample of N time points $t_1,...$ t_N P₀ is the human auditory threshold, = 2 x 10⁻⁵ Pa

Note: dB scale is logarithmic, not linear!

Total

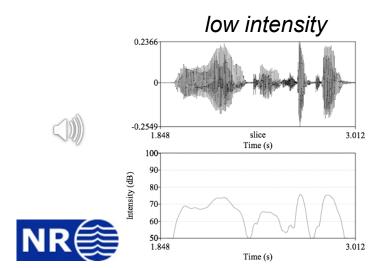

energy

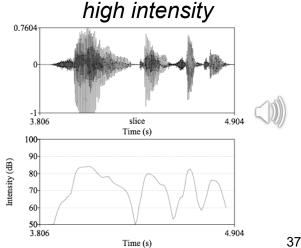

of signal

Why are F₀ and the intensity important?

F₀ correlates with the *pitch* of the voice, and the pitch movement for an utterance will give us its *intonation*

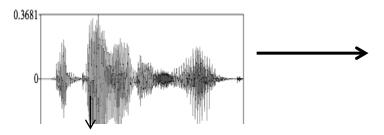
Interrogative utterance = rising intonation at the end





Why are F₀ and the intensity important?

F₀ correlates with the *pitch* of the voice, and the pitch movement for an utterance will give us its *intonation*


The signal intensity corresponds to the *loudness* of the speech sound

The speech recognition task

Input: Audio data

Sequence **O** of acoustic observations (i.e. every 20 ms)

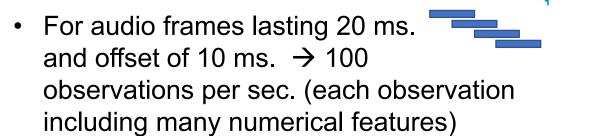
Output: Transcription

"The ball is red"

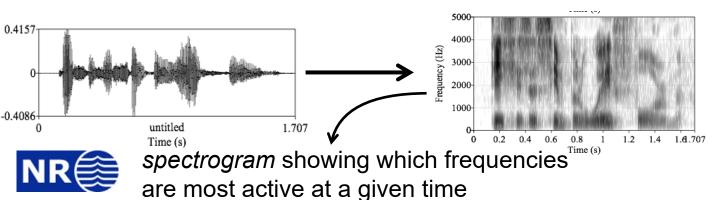
Goal: Map speech signal **O** into sequence of linguistic symbols \widehat{W} (words or characters):

$$\hat{W} = \operatorname*{argmax}_{W} P(W|O)$$

Why is ASR difficult?


 Many sources of variation: speaker voice (and style), accents, ambient noise, etc.

Why is ASR difficult?


- Many sources of variation: speaker voice (and style), accents, ambient noise, etc.
- Very long input sequences

But output sequence (e.g. phonemes, characters or tokens) much shorter and <u>no</u> <u>explicit alignment between input and output</u>

Preprocessing

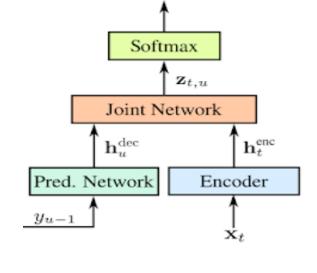
- Most speech sounds cannot be distinguished from the raw waveform
- Better: convert the signal to a representation of the signal's component frequencies
 - Based on Fourier's transform

"Classical" model

Using Bayes' rule, we can rewrite W as:

$$\hat{W} = \operatorname*{argmax}_{W} \frac{P(O|W)P(W)}{P(O)}$$
 (Bayes)
$$= \operatorname*{argmax}_{W} P(O|W)P(W)$$
 (P(O) constant for all W) Acoustic model

Determines the probability of the acoustic inputs O given the word sequence W Determines the probability of the word sequence W


Neural ASR

- The best performing ASR are deep, endto-end neural architectures
 - Less dependent on external ressources (such as pronunciation dictionaries)
 - Move from carefully handcrafted acoustic features to *learned* representations
- Too time demanding to review here
 - But they rely on the same building blocks as other NNs: convolutions, recurrence, (self-)attention, etc.

Neural ASR

An example of a relatively simple neural model: Google's on-device ASR

- Encoder maps audio signal xt to hidden representations (with stacked LSTMs)
- Prediction Network is a language model

 $P(\mathbf{y}|t, u)$

Model then merges the two hidden representations and predicts outputs character-by-character

ASR Performance

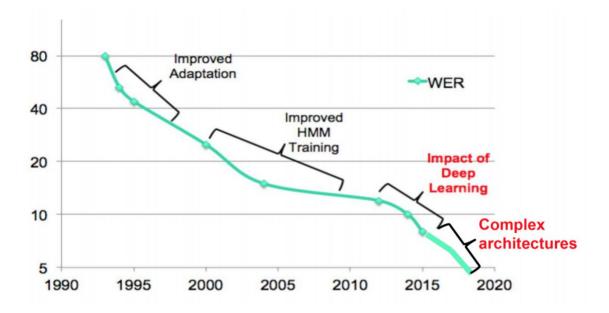
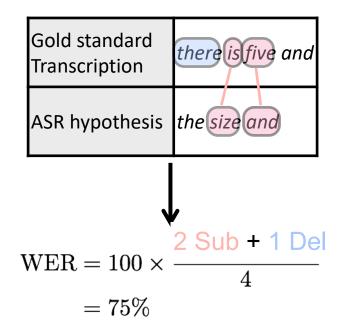


Figure: ASR Performance¹ on English Conversational Telephony (Switchboard)

ASR evaluation


- Standard metric: Word Error Rate
 - Measures how much the utterance hypothesis h differs from the «gold standard» transcription t*
- = Minimum edit distance between h and t*, counting the number of word substitutions, insertions and deletions:

Word Error Rate =
$$100 \times \frac{\text{Insertions} + \text{Substitutions} + \text{Deletions}}{\text{Number of words in transcription}}$$

ASR evaluation

Disfluencies

- Speakers construct their utterances «as they go», incrementally
 - Production leaves a *trace* in the speech stream
- ► Presence of multiple disfluencies
 - Pauses, fillers («øh», «um», «liksom»)
 - Repetitions («the the ball»)
 - Corrections («the ball err mug»)
 - Repairs («the bu/ ball»)

Disfluencies

Internal structure of a disfluency:

- reparandum: part of the utterance which is edited out
- interregnum: (optional) filler
- repair: part meant to replace the reparandum

Some disfluencies

så <u>gikk jeg</u> e <u>flytta vi</u> til Nesøya da begynte jeg på barneskolen der

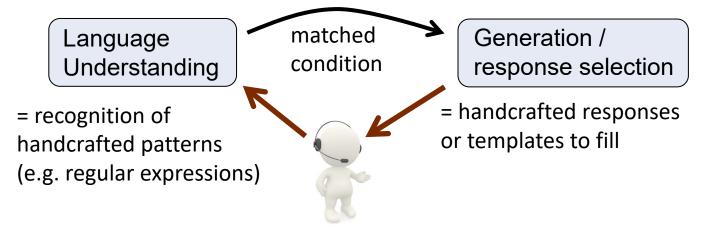
og så har jeg gått på Landøya ungdomsskole # som ligger ## <u>rett over broa nesten</u> # <u>rett med Holmen</u>

jeg gikk på Bryn e skole som lå rett ved der vi bodde den gangen e <u>barneskole</u>

videre på Hauger ungdomsskole

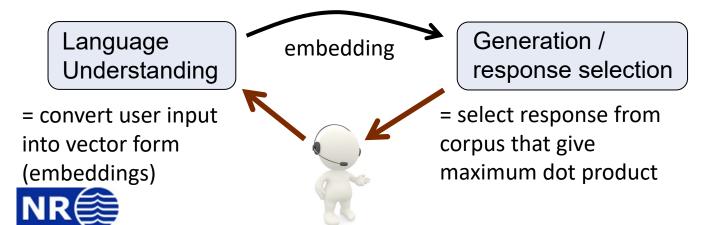
da <u>hadde alle hele på skolen skulle</u> liksom # spise julegrøt og <u>det va- det var</u> bare en mandel

og da var jeg som fikk den da ble skikkelig sånn " wow # jeg har fått den " ble så glad


Plan for today

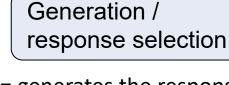
- Obligatory assignment
- Chatbot models (cont'd)
- Natural Language Understanding (NLU)
- Speech recognition
- Summary

How to develop a chatbot:


Rule-based approaches

How to develop a chatbot:

- Rule-based approaches
- IR-based approaches


How to develop a chatbot:

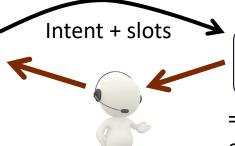
- Rule-based approaches
- IR-based approaches
- Seq-to-seq approaches

Language Understanding

= convert user input into vector form (embeddings)

embedding

= generates the response token by token (learned from corpus)


How to develop a chatbot:

- Rule-based approaches
- IR-based approaches
- Seq-to-seq approaches
- NLU-based approaches

Often useful to rely on a combination of techniques – such as doing intent recognition using both rules and ML

Language Understanding

=map utterance to an intent + slots

Generation / response selection

handcrafted response or template to fill

Acoustic observations

$$_{7}$$
 O = o_{1} , o_{2} , o_{3} , ..., o_{m}

ASR:
$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|O)$$
 Recognition hypothesis $W = W_1, W_2, W_3, ..., W_n$

- Deep NNs have boosted ASR performance
 - But not yet a «solved problem»
 - (especially for ressource-poor languages and non-standard voices/acoustic environments)
 - Word Error Rate metric used for evaluation
- Disfluencies abound in spoken language

Next week

- Next week, we'll talk about dialogue management
 - that is, how do we control the flow of the interaction over time?
 - Including how to optimise dialogue policies using reinforcement learning
- And we will also talk about how to design and evaluate dialogue systems

