IN4080 – 2020 FALL NATURAL LANGUAGE PROCESSING

Logistic Regression

Lecture 4, 7 Sept

Logistic regression

In natural language processing, logistic regression is the baseline supervised machine learning algorithm for classification, and also has a very close relationship with neural networks.

(J&M, 3. ed., Ch. 5)

Relationships

Today

- □ Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

Machine learning

- □ Last week: Naive Bayes
 - Probabilistic classifier
 - Categorical features
- Today
 - A geometrical view on classification
 - Numeric features
- Eventually see that both Naive Bayes and Logistic regression can fit both descriptions

Notation

When considering numerical features, it is usual to use

- \square $(x_1, x_2, ..., x_n)$ for the features, where
 - each feature is a number
 - a fixed order is assumed
- $\square y$ for the output value/class
- □ In particular, J&M use
 - $\ \ \ \hat{y}$ for the predicted value of the learner, $\hat{y}=f(x_1,x_2,\dots,x_n)$
 - y for the true value
 - \square (where Marsland, IN3050, uses y and t, resp.)

Machine learning

- □ In NLP, we often consider
 - thousands of features (dimension)
 - categorical data
- These are difficult to illustrate by figures
- □ To understand ML algorithms
 - it easier to use one or two features, 2-3 dimensions, to be able to draw figures
 - and then to use numerical data, to get non-trivial figures

Scatter plot example

- Two numeric features
- □ Three classes
- We may indicate the classes by colors or symbols

Classifiers – two classes

- Many classification methods are made for two classes
 - And then generalizes to more classes
- The goal is to find a curve that separates the two classes
- With more dimensions: to find a (hyper-)surface

Linear classifiers

- Linear classifiers try to find a straight line that separates the two classes (in 2-dim)
- The two classes are linearly separable_if they can be separated by a straight line
- If the data isn't linearly separable, the classifier will make mistakes.
- Then: the goal is to make as few mistakes as possible

One-dimensional classification

- A linear separator is simply a point
- An observation is classified as
 - □ class 1 iff x>m
 - □ Class 0 iff x<m</p>

Data set 1: linerarly separable

Data set 2: not linerarly separable

Linear classifiers: two dimensions

- \Box a line has the form ax+by+c=0
- \Box ax + by < -c for red points
- \Box ax + by > -c for blue points

More dimensions

- In a 3 dimensional space (3 features) a linear classifier corresponds to a plane
- In a higher-dimensional space it is called a hyper-plane

Linear classifiers: n dimensions

A hyperplane has the form

$$\sum_{i=1}^{n} w_i x_i + w_0 = 0$$

- which equals
 - $\sum_{i=0}^{n} w_i x_i = (w_0, w_1, \dots, w_n) \cdot (x_0, x_1, \dots, x_n) = \vec{w} \cdot \vec{x} = 0,$
 - \square assuming $x_0 = 1$
- An object belongs to class C iff

$$\hat{y} = f(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} w_i x_i = \vec{w} \cdot \vec{x} > 0$$

and to not C, otherwise

Today

- Linear classifiers
- □ Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

Linear Regression

□ Data:

- 100 males: height and weight
- □ Goal:
 - Guess the weight of other males when you only know the height

Linear Regression

■ Method:

- Try to fit a straight line to the observed data
- Predict that unseen data are placed on the line
- Questions:
 - What is the best line?
 - How do we find it?

Best fit

- □ To find the best fit, we compare each
 - \blacksquare true value y_i (green point)
 - lacktriangle to the corresponding predicted value \hat{y}_i (on the red line)
- □ We define a loss function
 - lacktriangle which measures the discrepancy between the y_i -s and \hat{y}_i -s
 - (alternatively called error function)
- The goal is to minimize the loss

Loss for linear regression

For linear regression, usual to use:

□ Mean square error:

$$\frac{1}{m}\sum_{i=1}^{m}d_{i}^{2}$$

where

$$d_i = (y_i - \hat{y}_i)$$

$$\hat{y}_i = (ax_i + b)$$

- Why squaring?
 - To not get 0 when we sum the diff.s.
 - Large mistakes are punished more severly

Learning = minimizing the loss

- □ For lin. regr. there is a formula
 - (this is called an analytic solution)
 - But slow with many (millions) of features
- Alternative:
 - Start with one candidate line
 - Try to find better weights
 - Use Gradient Descent
 - A kind of search problem

Gradient descent

- We use the derivative of the (mse) loss function to point in which direction to move
- We are approaching a unique global minimum
- □ For details:
 - □ IN3050/4050 (spring)

Linear regression: higher dimensions

- Linear regression of more than two variables works similarly
- □ We try to fit the best (hyper-)plane

$$\hat{y} = f(x_0, x_1, ..., x_n) = \sum_{i=0}^{n} w_i x_i = \vec{w} \cdot \vec{x}$$

We can use the same mean square error:

$$\frac{1}{m} \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$

Gradient descent

- The loss function is convex: you are not stuck in local minima
- The gradient
 - (= the partial derivatives of the loss function)
- tells us in which direction we should move
 - = how long steps in each direction

Today

- Linear classifiers
- Linear regression
- □ Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

From regression to classification

 Goal: predict gender from two features: height and weight

Predicting gender from height

- First:try to predict from height only
- The decision boundary should be a number: c
- An observation, n, is classified
 - □ 1(male) if height_n > c
 - □ 0 (not male) otherwise
- □ How do we determine c?

Digression

By the way

- How good are the best predictions og gender given height?
- □ Given weight?
- □ Given height+weight?

Linear regression is not the best choice

- □ How do we determine c?
- We may use linear regression:
 - Try to fit a straight line
 - The observations has $y \in \{0,1\}$
 - The predicted value $\hat{y} = ax + b$
- Possible, but
 - Bad fit, y_i and \hat{y}_i are different
 - Correctly classified objects contribute to the error (wrongly!)

The "correct" decision boundary

- The correct decision boundary is the Heaviside step function
- □ But:
 - Not a differentiable function
 - can't apply gradient descent

The sigmoid curve

- An approximation to the ideal decision boundary
- Differentiable
 - Gradient descent
- Mistakes further from the decision boundary are punished harder

An observation, n, is classified

- $male if f(height_n) > 0.5$
- not male otherwise

The logistic function

- $y = \frac{1}{1+e^{-z}} = \frac{e^z}{e^z+1}$
- □ A sigmoid curve
 - But also other functions make sigmoid curves e.g. $y = \tanh(z)$
- □ Maps $(-\infty, \infty)$ to (0,1)
- Monotone
- Can be used for transforming numeric values into probabilities

Exponential function - Logistic function

$$y = e^z$$

$$y = \frac{1}{1 + e^{-z}} = \frac{e^z}{e^z + 1}$$

The effect

- Instead of a linear classifier which will classify some instances incorrectly
- The logistic regression will ascribe a probability to all instances for the class C (and for notC)
- □ We can turn it into a classifier by ascribing class C if $P(C|\vec{x}) > 0.5$
- We could also choose other cutoffs, e.g. if the classes are not equally important

Logistic regression

- Logistic regression is probability-based
- Given to classes C, not-C, start with $P(C|\vec{x})$ and $P(notC|\vec{x})$ given a feature vector \vec{x}
- □ Consider the odds $\frac{P(C|\vec{x})}{P(notC|\vec{x})} = \frac{P(C|\vec{x})}{1 P(C|\vec{x})}$
 - \square If this is >1, \vec{x} most probably belongs to C
 - It varies between 0 and infinity
- □ Take the logarithm of this $\log \frac{P(C|\vec{x})}{1 P(C|\vec{x})}$
 - \blacksquare If this is >0, \vec{x} most probably belongs to C
 - It varies between minus infinity and pluss infinity

Logistic regression

$$\square \log \frac{P(C|\vec{x})}{1 - P(C|\vec{x})} > 0 ?$$

- □ Try to find a linear expression for this $\log \frac{P(C|\vec{x})}{1-P(C|\vec{x})} = \vec{w} \cdot \vec{x} > 0$
- Given such a linear expression

$$P(C|\vec{x}) = \frac{e^{\vec{w}\cdot\vec{x}}}{1+e^{\vec{w}\cdot\vec{x}}} = \frac{1}{1+e^{-\vec{w}\cdot\vec{x}}}$$

With two features

From IDRE, UCLA

- \square Two features: x_1, x_2
- \square Apply weights: W_0, W_1, W_2
- \Box Let $y = w_0 + w_1 x_1 + w_2 x_2$
- \square Apply the logistic function, σ , and check whether

$$\sigma(y) = \frac{1}{1 + e^{-y}} > 0.5$$

Geometrically:

Folding a plane along a sigmoid
The decision boundary is the intersection of
this surface and the plane 0.5: a straight line

Today

- Linear classifiers
- Linear regression
- Logistic regression
- □ Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

How to find the best curve?

- □ What are the best choices of a and b in $\frac{1}{1+e^{-(ax+b)}}$?
- Geometrically a and b
 determine the
 - Midpoint
 - Steepness
- of the curve

Learning in the logistic regression model

- A training instance consists of
 - \blacksquare a feature vector \vec{x}
 - \blacksquare a label (class), y, which is 1 or 0.
- □ With a set of weights, \overrightarrow{w} , the classifier will assign

$$\hat{y} = P(C = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$
 to this training instance \vec{x}

- \blacksquare where $P(C=0|\vec{x})=1-\hat{y}$
- □ Goal: find \vec{w} that maximize $P(C = y | \vec{x})$ of all training inst.s

Loss function

- In machine learning we have to determine an objective for the training.
- We can do that in terms of a loss function.
- □ The goal of the training is to minimize the loss function.
- Example: linear regression
 - Loss: Mean Square Error

- We can choose between various loss functions.
- The choice is partly determined by the learner.
- For logistic regression we choose (simplified) crossentropy loss

Cross-entropy loss

- The underlying idea is that we want to maximize the joint probability of all the predictions we make
 - $\square \prod_{i=1}^m P(y^{(i)} \mid \vec{x}^{(i)})$, over all the training data i = 1, 2, ...m
- This is the same as maximizing
- This is the same as minimizing

 - Which is an instance of what is called the cross-entropy loss

Gradient descent

- To minimize the loss function we can use gradient descent.
- □ Good news:
 - The loss function is convex: you are not stuck in local minima
 - We know which way to go
- □ We skip the details of sec. 5.4

Variations of gradient descent

Batch training:

- Calculate the loss for the whole training set
- Make one move in the correct direction
- Repeat (an epoch)
- Can be slow

Stochastic gradient descent:

- Pick one item
- Calculate the loss for this item
- Move in the direction of the gradient for this item
- Each move does not have to be in the direction of the gradient for the whole set.
- But the overall effect may be good
- Can be faster

Variations of gradient descent

Mini-batch training:

- Pick a subset of the training set of a certain size
- Calculate the loss for this subset
- Make one move in the direction of this gradient
- Repeat (an epoch)
- A good compromise between the two extremes
- (The other two are subcases of this)

Solvers/optimizers

- There are various different solvers and optimizers for gradient descent (which you may meet later).
- Observe that you may specify between solvers in scikit-learn.

Regularization

- LogReg is prone to overfitting to the training data
- Hence apply regularization

$$\hat{w} = \arg\max_{w} \sum_{i=1}^{m} \log P(c^{i} \mid \vec{f}^{i}) - \alpha R(w)$$

- The regularization punishes large weights
- \square Most common is L2-regularization $R(W) = \sum_{i=0}^{n} w_i^2$
- \square Alternative: L1-regularization $R(W) = \sum_{i=0}^{n} |w_i|$

scikit-learn - LogisticRegression

- □ LogisticRegression(penalty='12', ..., C=1.0, ...)
- By adjusting C, you may get better results
- □ The optimal C varies from task to task
- Uses L2-regularization as default
- Whether L1 or L2 may depend on the learner

Example: Features for sent. classification in LR

Var	Definition	Value in Fig. 5.2
x_1	count(positive lexicon) ∈ doc)	3
x_2	count(negative lexicon) ∈ doc)	2
<i>x</i> ₃	<pre> { 1 if "no" ∈ doc 0 otherwise }</pre>	1
x_4	count(1st and 2nd pronouns ∈ doc)	3
<i>x</i> ₅	<pre>{ 1 if "!" ∈ doc 0 otherwise</pre>	0
x_6	log(word count of doc)	ln(64) = 4.15

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- □ Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

Multinomial Logistic Regression

- □ Also called maximum entropy (maxent) classifier, or softmax regression
- With one class we
 - $considered <math>P(C|\vec{x}) = \frac{e^{\vec{w} \cdot \vec{x}}}{1 + e^{\vec{w} \cdot \vec{x}}} = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$
 - lacksquare and implicitly $P(non\mathcal{C}|\vec{x}) = 1 \frac{e^{\overrightarrow{w}\cdot\overrightarrow{x}}}{1 + e^{\overrightarrow{w}\cdot\overrightarrow{x}}} = \frac{1}{1 + e^{\overrightarrow{w}\cdot\overrightarrow{x}}}$
- \square We now consider a linear expression \overrightarrow{w}_i , for each class C_i , i=1,...,k
- □ The probability for each class is then given by the softmax function

$$P(C_j|\vec{x}) = \frac{e^{\overrightarrow{w_j} \cdot \vec{x}}}{\sum_{i=1}^k e^{\overrightarrow{w_i} \cdot \vec{x}}}$$

Example: softmax

- 4 different classes corresponding to the dots below the 0-line
- For each of them a corresponding softmax curve
- This expresses the probability of the observation belonging to this class
- For classification of a new observation: Choose the class with the largest probability.
- □ In 3D
 - A surface for each class
 - They cut each other along straight lines
 - = decision boundaries

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

Training Multinomial Logistic Regression

- □ This is done similarly to the binary task
- We skip the details

Features in Multinomial LR

- \square Multinomial LR constructs $P(C_j|\vec{x}) = \frac{e^{w_j \cdot x}}{\sum_{i=1}^k e^{\overrightarrow{w_i} \cdot \overrightarrow{x}}}$ for each class.
- \square This corresponds to one linear expression \overrightarrow{w}_i , for each C_i , $i=1,\ldots,k$
- Alternatively, think of this
 - different features for each class:
 - notation $f_i(C, x)$ feature i for the class C and observation x
 - and one set of weights for the features and classes:
- In scikit-learn we write features as before and LogisticRegression constructs the match with labels during training

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- □ Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

Categories as numbers

- In the naive Bayes model we could handle categorical values directly,
 e.g., characters:
 - \square What is the probability that $c_n = 'z'$
- But many classifier can only handle numerical data
- How can we represent categorical data by numerical data?
- □ (In general, it is not a good idea to just assign a single number to each category: $a \to 1$, $b \to 2$, $c \to 3$, ...)

Data representation

Assume the following example

	4 different featues				Classes
feature	f1	f2	f3	f4	
type	cat	cat	Bool (num)	num	
Value set	a, b, c	х, у	True, False	0, 1, 2, 3,	Class1, class2

Representation in NLTK

```
[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),
({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),
({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]
```

3 training instances

4 features

class

One-hot encoding

feature 1			feature 2	
а	b	С	x	у
(1,0,0)	(0,1,0)	(0,0,1)	(1,0)	(0,1)

 Represent categorical variables as vectors/arrays of numerical variables

Representation in scikit: "one hot" encoding

NLTK

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),
({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),
({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

4 features

class

scikit

3 training instances

One-hot encoding					
а	b	С			
[1, 0, 0]	[0, 1,]	[0, 0, 1			

3 corresponding classes

Converting a dictionary

- We can construct the data to scikit directly
- Scikit has methods for converting Python-dictionaries/NLTK-format to arrays
 - " train_data = [inst[0] for inst in train]
 " train_target = [inst[1] for inst in train]
 " v = DictVectorizer()
 " X_train=v.fit_transform(train_data)

 Transform
 Use same v as for train

 Train

Multinomial NB in scikit

- We can construct the data to scikit directly
- Scikit has methods for converting text to bag of words arrays

Positions corresponds to [anta, en, er, fiol, rose]

Sparse vectors

- One hot encoding uses space
- 26 English characters:
 - Each is represented as a vector with 25 '0'-s and a singel '1'
- Bernoulli NB text. classifier with
 2000 most frequent words
 - Each word represented by a vector with 1999 '0'-s and a singel '1'.

scikit-learn uses internally a dictionary-like representation for these vectors, called "sparse vectors"

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- Logistic regression vs Naïve Bayes

Generative classifiers

$$P(s_{m} \mid \langle f_{1} = v_{1}, f_{2} = v_{2}, ..., f_{n} = v_{n} \rangle) = \frac{P(\langle f_{1} = v_{1}, f_{2} = v_{2}, ..., f_{n} = v_{n} \rangle \mid s_{m}) P(s_{m})}{P(\langle f_{1} = v_{1}, f_{2} = v_{2}, ..., f_{n} = v_{n} \rangle)}$$

- Naive Bayes is an example of a generative classifier
- On its way to deciding which class is most probable:
 - It estimates the probability of the observation given the class
 - It "generates" the observation with a certain probability
- For an observation:
 - which model ascribes the highest probability
 - x the probability of the model

- Example: is this picture of a dog or cat?
- To decide:
 - Generate a picture of a dog
 - i.e. make a probability distribution over all picture: how probable is it you will draw a dog like this?
- Do the same for a cat

Generating positive movie reviews

- □ First choose the length of the review, say n=1000 words
- Then choose the first word
 - according to the probability distribution P(w | 'pos') e.g.
 - $\widehat{P}(w = the|pos) = 0.1$
 - $\widehat{P}(w = pitt|pos) = \frac{31}{798742}$
- □ Then choose word 2, etc. up to word 1000

- Observation:
 - Whether we compare to negative film reviews of positive book reviews, we will use the same features
- □ Footnote:

The multinomial text model tacitly suppress "choose length of document", and assumes it is independent of class

Discriminative classifiers

- A discriminative classifier considers the probability of the class given the observation directly.
- □ E.g. a discriminative text classifier may focus on the features:
 - terrible and terrific for pos. vs. neg film review
 - director and author for pos. film vs. pos. book review
- The discriminative classifier
 - may be more efficient
 - but gives less explanation
 - and may eventually focus on wrong features

Today

- Linear classifiers
- Linear regression
- Logistic regression
- Training the logistic regression classifier
- Multinomial Logistic Regression
- Representing categorical features
- Generative and discriminative classifiers
- □ Logistic regression vs Naïve Bayes

Logistic regression and Naive Bayes

- Both are probability-based
- \square In the two-class case they consider whether $P(C|\vec{x}) > P(notC|\vec{x})$
- \square equivalently whether $\log \frac{P(C|\vec{x})}{P(notC|\vec{x})} > 0$

Comparing NB and LogReg

- NB is a generative classifier:
 - It has a model of how the data are generated
 - $P(C)P(\vec{f}|C) = P(\vec{f},C)$
- LogReg is a discriminative classifier
 - lacksquare It only considers the conditional probability $P(C|\vec{f})$

Logistic reg. and Naive Bayes are log-linear

- □ whether $\log \frac{P(C|\vec{x})}{P(notC|\vec{x})} > 0$
- $\Box \text{ For NB: } \log \frac{P(C|\vec{x})}{P(notC|\vec{x})} = \log P(c_1|\vec{f}) \log P(c_2|\vec{f}) = \log P(c_1) + \sum_{j=1}^{n} \log P(f_j|c_1) \log P(c_2) + \sum_{j=1}^{n} \log P(f_j|c_2) > 0$
 - one particular linear expression,
- □ For LR: $\log \frac{P(C|\vec{x})}{P(notC|\vec{x})} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
 - the linear expression that fits the training data best

Naive Bayes is an instance of log-linear

- $\square \text{ LR: } \log \frac{P(C|\vec{x})}{P(notC|\vec{x})} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$
- $\square NB: \log P(c_1 \mid \vec{f}) \log P(c_2 \mid \vec{f}) = \log P(c_1) + \sum_{j=1}^{n} \log P(f_j \mid c_1) (\log P(c_2) + \sum_{j=1}^{n} \log P(f_j \mid c_2)) > 0$
- Where:
 - $w_0 = P(c_1) P(c_2)$

Comparing NB and LogReg

72

- NB is an instance of LogReg,
 - □ i.e. one possible choice of weights
- LogReg will do at least as well as NB on the training data
 - (without any smoothing)
- When the independence assumptions of NB holds, NB will do as well as LogReg
- When the independence assumptions does not hold, NB may put too much weight on some features
- LogReg will not do this: If we add features that depend on other features,
 LogReg will put less weight on them

Ablation studies

- One way to see which features are important for LogReg
- Start with a classifier which uses many features
- Remove one feature f1, retrain and see whether it has an effect
- Remove another feature f2, instead of f1 or in addition to f1, and study the effect
- Beware of the possibility:
 - Removing f1 only has little effect
 - Removing f2 only has little effect
 - Removing both f1 and f2 might have a large effect
 - Why is this so?