
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1

Lecture 4, 7 Sept

Logistic Regression

2

Logistic regression
3

In natural language processing, logistic regression

is the baseline supervised machine learning

algorithm for classification, and also has a very

close relationship with neural networks.

(J&M, 3. ed., Ch. 5)

Relationships
4

Logistic

regression

Naive Bayes Generative

Discriminative

Linear

Non-linear

Multi-layer

neural

networks

Generalizes

Extends

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

5

Machine learning

 Last week: Naive Bayes

 Probabilistic classifier

 Categorical features

 Today

 A geometrical view on classification

 Numeric features

 Eventually see that both Naive Bayes and Logistic regression can fit

both descriptions

6

Notation

When considering numerical features, it is usual to use

 𝑥1, 𝑥2, … , 𝑥𝑛 for the features, where

 each feature is a number

 a fixed order is assumed

 𝑦 for the output value/class

 In particular, J&M use

 ො𝑦 for the predicted value of the learner, ො𝑦 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛
 𝑦 for the true value

 (where Marsland, IN3050, uses 𝑦 and 𝑡, resp.)

7

Machine learning

 In NLP, we often consider

 thousands of features (dimension)

 categorical data

 These are difficult to illustrate by figures

 To understand ML algorithms

 it easier to use one or two features, 2-3 dimensions, to be able to draw

figures

 and then to use numerical data, to get non-trivial figures

8

Scatter plot example

 Two numeric features

 Three classes

 We may indicate the classes by

colors or symbols

9

Classifiers – two classes

 Many classification methods are

made for two classes

 And then generalizes to more

classes

 The goal is to find a curve that

separates the two classes

 With more dimensions: to find a

(hyper-)surface

10

Linear classifiers

 Linear classifiers try to find a
straight line that separates the
two classes (in 2-dim)

 The two classes are linearly
separable if they can be
separated by a straight line

 If the data isn’t linearly
separable, the classifier will make
mistakes.

 Then: the goal is to make as few
mistakes as possible

11

One-dimensional classification

 A linear separator is

simply a point

 An observation is

classified as

 class 1 iff x>m

 Class 0 iff x<m

12

0

1

0

1

0 0 xx

0 x0 x

Data set 1:

linerarly separable

Data set 2:

not linerarly separable

m

mm

m

Linear classifiers: two dimensions

 a line has the form ax+by+c=0

 ax + by < -c for red points

 ax + by > -c for blue points

13

More dimensions

 In a 3 dimensional space (3

features) a linear classifier

corresponds to a plane

 In a higher-dimensional space it

is called a hyper-plane

14

Linear classifiers: n dimensions

 A hyperplane has the form

 σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 + 𝑤0 = 0

 which equals

 σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖 =

𝑤0, 𝑤1, … , 𝑤𝑛 ∙ 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝑤 ∙ Ԧ𝑥 = 0,

 assuming 𝑥0 = 1

 An object belongs to class C iff

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥 > 0

 and to not C, otherwise

15

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

16

Linear Regression

 Data:

 100 males: height and weight

 Goal:

 Guess the weight of other males

when you only know the height

17

Linear Regression

 Method:

 Try to fit a straight line to the

observed data

 Predict that unseen data are

placed on the line

 Questions:

 What is the best line?

 How do we find it?

18

Best fit

 To find the best fit, we compare each

 true value 𝑦𝑖 (green point)

 to the corresponding predicted value ො𝑦𝑖
(on the red line)

 We define a loss function

 which measures the discrepancy between

the 𝑦𝑖-s and ො𝑦𝑖-s

 (alternatively called error function)

 The goal is to minimize the loss

19

xi

yi

di

Loss for linear regression

For linear regression, usual to use:

 Mean square error:

1

𝑚

𝑖=1

𝑚

𝑑𝑖
2

 where

 𝑑𝑖 = 𝑦𝑖 − ො𝑦𝑖

 ො𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏

 Why squaring?

 To not get 0 when we sum the diff.s.

 Large mistakes are punished more severly

20

xi

yi

di

Learning = minimizing the loss

 For lin. regr. there is a formula

 (this is called an analytic
solution)

 But slow with many (millions) of
features

 Alternative:

 Start with one candidate line

 Try to find better weights

 Use Gradient Descent

 A kind of search problem

21

Gradient descent

 We use the derivative of the

(mse) loss function to point in

which direction to move

 We are approaching a unique

global minimum

 For details:

 IN3050/4050 (spring)

22

Linear regression: higher dimensions

 Linear regression of more than two variables

works similarly

 We try to fit the best (hyper-)plane

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥

 We can use the same mean square error:

1

𝑚

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2

23

Gradient descent

 The loss function is convex: you

are not stuck in local minima

 The gradient

 (= the partial derivatives of the

loss function)

 tells us in which direction we

should move

 = how long steps in each

direction

24

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

25

From regression to classification

 Goal: predict gender from two

features: height and weight

26

Predicting gender from height

 First:

try to predict from height only

 The decision boundary should

be a number: c

 An observation, n, is classified

 1(male) if height_n > c

 0 (not male) otherwise

 How do we determine c?

27

Digression

By the way

 How good are the best

predictions og gender given

height?

 Given weight?

 Given height+weight?

28

Linear regression is not the best choice

 How do we determine c?

 We may use linear regression:

 Try to fit a straight line

 The observations has 𝑦 ∈ 0,1

 The predicted value ො𝑦 = 𝑎𝑥 + 𝑏

 Possible, but

 Bad fit, 𝑦𝑖 and ො𝑦𝑖are different

 Correctly classified objects

contribute to the error (wrongly!)

29

c

The ‘’correct’’ decision boundary

 The correct decision boundary

is the Heaviside step function

 But:

 Not a differentiable function

 can't apply gradient descent

30

The sigmoid curve

 An approximation to the ideal

decision boundary

 Differentiable

 Gradient descent

 Mistakes further from the decision

boundary are punished harder

31

An observation, n, is classified

• male if f(height_n) > 0.5

• not male otherwise

The logistic function

 𝑦 =
1

1+𝑒−𝑧
=

𝑒𝑧

𝑒𝑧+1

 A sigmoid curve

 But also other functions make
sigmoid curves e.g. 𝑦 = tanh 𝑧

 Maps (−∞,∞) to 0,1

 Monotone

 Can be used for transforming
numeric values into
probabilities

32

//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

Exponential function - Logistic function
33

𝑦 =
1

1 + 𝑒−𝑧
=

𝑒𝑧

𝑒𝑧 + 1
𝑦 = 𝑒𝑧

//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

The effect

 Instead of a linear classifier which
will classify some instances
incorrectly

 The logistic regression will ascribe
a probability to all instances for
the class C (and for notC)

 We can turn it into a classifier by
ascribing class C if 𝑃 𝐶 Ԧ𝑥 > 0.5

 We could also choose other cut-
offs, e.g. if the classes are not
equally important

34

source: Wikipedia

Logistic regression

 Logistic regression is probability-based

 Given to classes C, not-C,
start with 𝑃 𝐶 Ԧ𝑥 and 𝑃 𝑛𝑜𝑡𝐶 Ԧ𝑥 given a feature vector Ԧ𝑥

 Consider the odds
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
=

𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)

 If this is >1, Ԧ𝑥 most probably belongs to C

 It varies between 0 and infinity

 Take the logarithm of this log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)

 If this is >0, Ԧ𝑥 most probably belongs to C

 It varies between minus infinity and pluss infinity

35

Logistic regression

 log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
> 0 ?

 Try to find a linear expression for this log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
= 𝑤 ∙ Ԧ𝑥 > 0

 Given such a linear expression

𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
= 𝑒𝑤∙ Ԧ𝑥

 𝑃 𝐶 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥

36

With two features

 Two features: 𝑥1, 𝑥2
 Apply weights: 𝑤0, 𝑤1, 𝑤2

 Let 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2
 Apply the logistic function, 𝜎,

and check whether

 𝜎 𝑦 =
1

1+𝑒−𝑦
> 0.5

37

From IDRE, UCLA

Geometrically:

Folding a plane along a sigmoid

The decision boundary is the intersection of

this surface and the plane 0.5: a straight line

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

38

How to find the best curve?

 What are the best choices of a

and b in
1

1+𝑒− 𝑎𝑥+𝑏 ?

 Geometrically a and b

determine the

 Midpoint

 Steepness

 of the curve

39

Learning in the logistic regression model

 A training instance consists of

 a feature vector Ԧ𝑥

 a label (class), 𝑦, which is 1 or 0.

 With a set of weights, 𝑤,
the classifier will assign

 ො𝑦 = 𝑃 𝐶 = 1 Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥

to this training instance Ԧ𝑥

 where 𝑃 𝐶 = 0 Ԧ𝑥 = 1 − ො𝑦

 Goal: find 𝑤 that maximize
𝑃 𝐶 = 𝑦 Ԧ𝑥 of all training inst.s

40

Loss function

 In machine learning we have to

determine an objective for the

training.

 We can do that in terms of a

loss function.

 The goal of the training is to

minimize the loss function.

 Example: linear regression

 Loss: Mean Square Error

 We can choose between

various loss functions.

 The choice is partly determined

by the learner.

 For logistic regression we

choose (simplified) cross-

entropy loss

41

Cross-entropy loss

 The underlying idea is that we want to maximize the joint probability

of all the predictions we make

ς𝑖=1
𝑚 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖)), over all the training data i = 1, 2, …m

 This is the same as maximizing

 logς𝑖=1
𝑚 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖)) = σ𝑖=1

𝑚 log 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖))

 This is the same as minimizing

 𝐿𝐶𝐸 𝑤 = − logς𝑖=1
𝑚 𝑃(𝑦 𝑖 | 𝑥(𝑖)) = σ𝑖=1

𝑚 − log𝑃(𝑦(𝑖)| Ԧ𝑥(𝑖))

 Which is an instance of what is called the cross-entropy loss

42

Gradient descent

 To minimize the loss function we

can use gradient descent.

 Good news:

 The loss function is convex: you

are not stuck in local minima

 We know which way to go

 We skip the details of sec. 5.4

43

Variations of gradient descent

 Calculate the loss for the whole

training set

 Make one move in the correct

direction

 Repeat (an epoch)

 Can be slow

 Pick one item

 Calculate the loss for this item

 Move in the direction of the gradient
for this item

 Each move does not have to be in
the direction of the gradient for the
whole set.

 But the overall effect may be good

 Can be faster

44

Batch training: Stochastic gradient descent:

Variations of gradient descent

 Pick a subset of the training set of
a certain size

 Calculate the loss for this subset

 Make one move in the direction of
this gradient

 Repeat (an epoch)

 A good compromise between the
two extremes

 (The other two are subcases of
this)

 There are various different

solvers and optimizers for

gradient descent (which you

may meet later).

 Observe that you may specify

between solvers in scikit-learn.

45

Mini-batch training: Solvers/optimizers

Regularization

 LogReg is prone to overfitting to the training data

 Hence apply regularization

 The regularization punishes large weights

 Most common is L2-regularization 𝑅 𝑊 = σ0
𝑛𝑤𝑖

2

 Alternative: L1-regularization 𝑅 𝑊 = σ0
𝑛 |𝑤𝑖|

46

)()|(logmaxargˆ
1

wRfcPw
m

i

ii

w

scikit-learn – LogisticRegression
47

 LogisticRegression(penalty=’l2’, …, C=1.0, …)

 By adjusting C, you may get better results

 The optimal C varies from task to task

 Uses L2-regularization as default

 Whether L1 or L2 may depend on the learner

Example: Features for sent. classification in LR
48

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

49

Multinomial Logistic Regression

 Also called maximum entropy (maxent) classifier, or softmax regression

 With one class we

 considered 𝑃 𝐶 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥

 and implicitly 𝑃 𝑛𝑜𝑛𝐶 Ԧ𝑥 = 1 −
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒𝑤∙𝑥

 We now consider a linear expression 𝑤𝑖, for each class 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 The probability for each class is then given by the softmax function

𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒𝑤𝑗∙ Ԧ𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙ Ԧ𝑥

50

Example: softmax

 4 different classes corresponding to
the dots below the 0-line

 For each of them a corresponding
softmax curve

 This expresses the probability of the
observation belonging to this class

 For classification of a new
observation: Choose the class with
the largest probability.

 In 3D

 A surface for each class

 They cut each other along straight lines

 = decision boundaries

51

52

https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html

Training Multinomial Logistic Regression

 This is done similarly to the binary task

 We skip the details

53

Features in Multinomial LR

 Multinomial LR constructs 𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒
𝑤𝑗∙𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙𝑥

for each class.

 This corresponds to one linear expression 𝑤𝑖, for each 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 Alternatively, think of this

 different features for each class:

 notation 𝑓𝑗(𝐶, 𝑥) feature j for the class C and observation x

 and one set of weights for the features and classes:

 In scikit-learn we write features as before and LogisticRegression

constructs the match with labels during training

54

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

55

Categories as numbers

 In the naive Bayes model we could handle categorical values directly,

e.g., characters:

 What is the probability that c_n = ‘z’

 But many classifier can only handle numerical data

 How can we represent categorical data by numerical data?

 (In general, it is not a good idea to just assign a single number to each

category: ‘a’1, ‘b’2, ‘c’ 3, …)

56

Data representation

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

57

4 features

Representation

in NLTK

class

3 training

instances

4 different featues Classes

feature f1 f2 f3 f4

type cat cat Bool

(num)

num

Value

set

a, b, c x, y True,

False

0, 1, 2,

3, …

Class1,

class2

Assume the

following

example

One-hot encoding
58

feature 1 feature 2

a b c x y

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

 Represent categorical variables

as vectors/arrays of numerical

variables

Representation in scikit: ‘’one hot’’ encoding

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

X_train:

array([[1., 0., 0., 0., 1., 1., 5.],

[0., 1., 0., 0., 1., 0., 2.],

[0., 0., 1., 1., 0., 0., 4.]])

train_target: ['class_1', 'class_2', 'class_1'], or

train_target: [1, 2, 1]

59

4 features

scikit

NLTK

7 features

class

3 corresponding classes

3 training

instances

3 training

instances

One-hot encoding

a b c

[1, 0, 0] [0, 1,] [0, 0, 1

Converting a dictionary

 We can construct the data to scikit directly

 Scikit has methods for converting Python-dictionaries/NLTK-format
to arrays

» train_data = [inst[0] for inst in train]

» train_target = [inst[1] for inst in train]

» v = DictVectorizer()

» X_train=v.fit_transform(train_data)

» X_test=v.transform(test_data)

60

1. Constructs (=fit)

repr. format

2. Transform

Transform

Use same v as

for train

Multinomial NB in scikit

 We can construct the data to scikit directly

 Scikit has methods for converting text to bag of words arrays

 Positions corresponds to [anta, en, er, fiol, rose]

» train_data=["en rose er en rose",
"anta en rose er en fiol"]

» v = CountVectorizer()

» X_train=v.fit_transform(train_data)

» print(X_train.toarray())
[[0 2 1 0 2]
[1 2 1 1 1]]

61

Sparse vectors

 One hot encoding uses space

 26 English characters:

 Each is represented as a vector

with 25 ‘0’-s and a singel ‘1’

 Bernoulli NB text. classifier with

2000 most frequent words

 Each word represented by a

vector with 1999 ‘0’-s and a

singel ‘1’.

 scikit-learn uses internally a

dictionary-like representation

for these vectors, called ’’sparse

vectors’’

62

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

63

Generative classifiers

 Naive Bayes is an example of a generative
classifier

 On its way to deciding which class is most
probable:

 It estimates the probability of the observation
given the class

 It "generates" the observation with a certain
probability

 For an observation:

 which model ascribes the highest probability

 x the probability of the model

 Example: is this picture of a dog or cat?

 To decide:

 Generate a picture of a dog

 i.e. make a probability distribution over all
picture: how probable is it you will draw a dog
like this?

 Do the same for a cat

64

 nn

mmnn

nnm
vfvfvfP

sPsvfvfvfP
vfvfvfsP

,...,,

)(|,...,,
,...,,|

2211

2211

2211

Generating positive movie reviews

 First choose the length of the
review, say n=1000 words

 Then choose the first word

 according to the probability
distribution P(w | 'pos') e.g.

 𝑃 𝑤 = 𝑡ℎ𝑒 𝑝𝑜𝑠) = 0.1

 𝑃 𝑤 = 𝑝𝑖𝑡𝑡 𝑝𝑜𝑠) =
31

798 742

 Then choose word 2, etc. up to
word 1000

 Observation:

 Whether we compare to
negative film reviews of positive
book reviews, we will use the
same features

 Footnote:

 The multinomial text model
tacitly suppress "choose length
of document", and assumes it is
independent of class

65

Discriminative classifiers

 A discriminative classifier considers the probability of the class given

the observation directly.

 E.g. a discriminative text classifier may focus on the features:

 terrible and terrific for pos. vs. neg film review

 director and author for pos. film vs. pos. book review

 The discriminative classifier

 may be more efficient

 but gives less explanation

 and may eventually focus on wrong features

66

Today

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes

67

Logistic regression and Naive Bayes

 Both are probability-based

 In the two-class case they consider whether𝑃 𝐶 Ԧ𝑥 > 𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)

 equivalently whether log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
>0

68

Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃(Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓

69

Logistic reg. and Naive Bayes are log-linear

 whether log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
>0

 For NB: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
=

 one particular linear expression,

 For LR: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛

 the linear expression that fits the training data best

70

0)2|(log)(log)|(log)(log)|(log)|(log
1

2

1

1121

n

j

j

n

j

j cfPcPcfPcPfcPfcP

Naive Bayes is an instance of log-linear

 LR: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛

 NB:

 Where:

𝑤0 = 𝑃 𝑐1 − 𝑃(𝑐2)

𝑤𝑖 = 𝑃 𝑓𝑗 𝑐1) − 𝑃 𝑓𝑗 𝑐2)

71

0)2|(log)(log)|(log)(log)|(log)|(log
1

2

1

1121

n

j

j

n

j

j cfPcPcfPcPfcPfcP

Comparing NB and LogReg

 NB is an instance of LogReg,

 i.e. one possible choice of weights

 LogReg will do at least as well as NB on the training data

 (without any smoothing)

 When the independence assumptions of NB holds, NB will do as well as
LogReg

 When the independence assumptions does not hold, NB may put too much
weight on some features

 LogReg will not do this: If we add features that depend on other features,
LogReg will put less weight on them

72

Ablation studies
73

 One way to see which features are important for LogReg

 Start with a classifier which uses many features

 Remove one feature f1, retrain and see whether it has an effect

 Remove another feature f2, instead of f1 or in addition to f1, and study the
effect

 Beware of the possibility:

 Removing f1 only has little effect

 Removing f2 only has little effect

 Removing both f1 and f2 might have a large effect

 Why is this so?

