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Logistic regression
B

In natural language processing, logistic regression
is the baseline supervised machine learning

algorithm for classification, and also has a very
close relationship with neural networks.

(J&M, 3. ed., Ch. 5)
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Machine learning

Last week: Naive Bayes
Probabilistic classifier
Categorical features

Today
A geometrical view on classification
Numeric features

Eventually see that both Naive Bayes and Logistic regression can fit
both descriptions



Notation

When considering numerical features, it is usual to use

(x4, %5, ..., X,,) for the features, where
each feature is a number

a fixed order is assumed
y for the output value /class

In particular, J&M use
y for the predicted value of the learner, § = f(xq, X5, ..., X3,)
y for the true value

(where Marsland, IN3050, uses y and ¢, resp.)



Machine learning

In NLP, we often consider
thousands of features (dimension)
categorical data

These are difficult to illustrate by figures

To understand ML algorithms

it easier to use one or two features, 2-3 dimensions, to be able to draw
figures

and then to use numerical data, to get non-trivial figures



Scatter plot example
.

1 Two numeric features
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The Iris Data Set
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Classifiers — two classes

Many classification methods are
made for two classes

1.00

And then generalizes to more

0.75 ~

classes

0.50 A

The goal is to find a curve that

> 0.25

separates the two classes

0.00 A

With more dimensions: to find a 025

(hyper-)surface ool




Linear classifiers

Linear classifiers try to find a
straight line that separates the
two classes (in 2-dim)

The two classes are linearly
separable_if they can be
separated by a straight line

If the data isn’t linearly
separable, the classifier will make
mistakes.

Then: the goal is to make as few
mistakes as possible

10




One-dimensional classification

Data set 1:
linerarly separable

o1 A linear separator is
simply a point

-1 An observation is
classified as
o class 1 iff x>m
o1 Class O iff x<m
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Data set 2:
not linerarly separable




Linear classifiers: two dimensions
e

7 a line has the form ax+by+c=0

o ax + by < -c for red points
o ax + by > -c for blue points of
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More dimensions
e

7 In a 3 dimensional space (3
features) a linear classifier
corresponds to a plane

71 In a higher-dimensional space it
is called a hyper-plane




Linear classifiers: n dimensions

A hyperplane has the form
i wix; + wy =0
which equals
im0 WiX; =
(Wo, We, e, W) = (X0, X1, ooy Xp) =W+ X = 0,

assuming Xo = 1

An object belongs to class C iff

n
5} :f(xO)xl;---;xn) — zwlxl — V_V>'£ > 0
=0

and to not C, otherwise
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Linear Regression

N

- Data:
1 100 males: height and weight
_ & x
o X XX 1 Goal:
a0 " f'ix:-c *
x .
o e 11 Guess the weight of other males
70 e REE when you only know the height
y ﬁg%&z
N ® ;.;EKKH .
50 :.:HJ-:
®
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Linear Regression

Method:

Try to fit a straight line to the
observed data

110 4

100 4

Predict that unseen data are
placed on the line

Questions:
What is the best line?

How do we find it¢

B 5 8 B8 3 B B8




Best fit

To find the best fit, we compare each

true value y; (green point)

to the corresponding predicted value y;
(on the red line)

We define a loss function

which measures the discrepancy between
the y;-s and J;-s

(alternatively called error function)

140 150 160 170 x, 180 190 The gOCII is to minimize '|'he |OS$



Loss for linear regression
e e

For linear regression, usual to use:

0 Mean square error:

1 m
1
m -

=1

l

110 4

100 4
o1 where
= d; =i —9)
= y; = (ax; + b)

7 Why squaring?

B 5 8 B8 3 B B8

o To not get O when we sum the diff.s.

40 150 160 170 x, 180 190 o Large mistakes are punished more severly



Learning = minimizing the loss

For lin. regr. there is a formula

(this is called an analytic
solution)

110 4

7 But slow with many (millions) of

features

Alternative:

Start with one candidate line

B 5 8 B8 3 B B8

Try to find better weights

B0 20 10 Do 1m0 10 Use Gradient Descent

A kind of search problem



Gradient descent

J(w)

Initial

. ;
/,/ Gradient

We use the derivative of the
(mse) loss function to point in
which direction to move

We are approaching a unique
global minimum

For details:
IN3050/4050 (spring)



Linear regression: higher dimensions

Linear regression of more than two variables

works similarly
We try to fit the best (hyper-)plane
n

5} :f(xOrxl;---;xn) — zwixi —_ V_V>'.')_C>
=0

We can use the same mean square error:

m
1 ( o
mZyi—yi)
=1




Gradient descent

o1 The loss function is convex: you
are not stuck in local minima

-1 The gradient
(= the partial derivatives of the
loss function)
0 tells us in which direction we
should move

= how long steps in each
direction

50

[ 40

[ 30

Cost

[ 20

10
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From regression to classification

1 Goal: predict gender from two
features: height and weight
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Predicting gender from height

150

125 4

100 -

075 -

0.50 1

025 1

0.00 { soe

-0.25 1

—0.50

140

= FS B HRE el adnan g @

First:
try to predict from height only

The decision boundary should
be a number: ¢

An observation, n, is classified
1(male) if height_n > ¢
O (not male) otherwise

How do we determine c¢



Digression
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By the way

How good are the best

predictions og gender given

height?
Given weight?
Given height+weight?



Linear regression is not the best choice

2
1 How do we determine c¢

1 We may use linear regression:

150

125 4 Tl‘y to fit a STI’dighT line

- o i The observations has y € {0,1}
The predicted value y = ax + b

075 -
0.50 1

025 1

- Possible, but

I]Il:lﬂ 4 EEE ®B # [ ]

» Bad fit, y; and y;are different

-0.25 1

B 150 160 € 170 180 190 200 = Correctly classified objects
contribute to the error (wrongly!)



The “correct’” decision boundary

-1 The correct decision boundary
is the Heaviside step function

150

125 - 1 But:
100 1 S RS Not a differentiable function

075 -

050 - = can't apply gradient descent

025 1
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The sigmoid curve
T

1 An approximation to the ideal
decision boundary

1 Differentiable
= Gradient descent

1 Mistakes further from the decision
boundary are punished harder

An observation, n, is classified

* male if f(height_n) > 0.5
* not male otherwise




The logistic function

. 1 e
y_ —

1+e~% eZ+1
A sigmoid curve

But also other functions make
sigmoid curves e.g. y = tanh(z)

Maps (—o0, ) to (0,1)
Monotone

Can be used for transforming
numeric values into
probabilities



//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

Exponential function - Logistic function



//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

The effect

Instead of a linear classifier which
will CIGSSif)’ some instances Probability of passing exam versus hours of studying

00000

incorrectly ce e g

The logistic regression will ascribe
a probability to all instances for
the class C (and for notC)

We can turn it into a classifier by
ascribing class C if P(C|x) > 0.5

We could also choose other cut-
offs, e.qg. if the classes are not s e

Probability of passing exam

equally important [




Logistic regression

Logistic regression is probability-based

Given to classes C, not-C,
start with P(C|x) and P(notC|x) given a feature vector X

P(CIX) _ P(C|x)
P(notC|X¥) 1-P(C|%)
If this is >1, X most probably belongs to C

Consider the odds

It varies between O and infinity

P(C|%)
1-P(C|x)
If this is >0, X most probably belongs to C

Take the logarithm of this log

It varies between minus infinity and pluss infinity



Logistic regression

P(C|%) 2
g1—P(C|a?) >0+
: : : : PCIX) _ — =5
Try to find a linear expression for this log PR w-x >0
Given such a linear expression
PCIX) _  wz
1-P(C|x)
P(CIR) = s = ——




With two features

—
™

X2

o Two features: x4,

0 Apply weights: wg, wq, W,
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o1 Apply the logistic function

and check whether

Geometrically:

The decision boundary is the intersection of
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From IDRE, UCLA

this surface and the plane 0.5: a straight line
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How to find the best curve?

7 What are the best choices of a

1

i e
. and b in (e
125 - °
. -1 Geometrically a and b
0.75 - determine the
= Midpoint
0.25 o
000 - veviivisasesesnssnsase o Steepness
o 0 of the curve
—0.50

140 150 160 170 180 190 200



Learning in the logistic regression model
o

7 A training instance consists of

9
a feature vector X

150 a label (class), y, whichis 1 or O.

- With a set of weights, w,
the classifier will assign

100 -

075 -

1
0.50 A — P C — 1 f — __
025 y ( | ) 1+e:w-x
000 | . to this training instance X
~0.25 - where P(C — Ol_)_c)) =1 —5}
[ ] ﬁ [ ] [ ]
B e LT "N Fem— 1 Goal: find w that maximize

P(C = y|x) of all training inst.s



Loss function

In machine learning we have to
determine an objective for the
training.

We can do that in terms of a
loss function.

The goal of the training is to
minimize the loss function.

Example: linear regression

Loss: Mean Square Error

We can choose between
various loss functions.

The choice is partly determined
by the learner.

For logistic regression we
choose (simplified) cross-
entropy loss



Cross-entropy loss

The underlying idea is that we want to maximize the joint probability
of all the predictions we make

i) P(y(i) ‘ f(i)), over all the training datai =1, 2, ...m
This is the same as maximizing
log [T, P(yW[x®) = ZIL,log P(y ] X))
This is the same as minimizing
Lep(W) = —log [T, Py V1x®) = ZL; —log P(y V|2 W)

Which is an instance of what is called the cross-entropy loss



Gradient descent

71 To minimize the loss function we
can use gradient descent.

1 Good news:

The loss function is convex: you
are not stuck in local minima

We know which way to go

1 We skip the details of sec. 5.4

50

[ 40

[ 30

Cost

[ 20

10



Variations of gradient descent
N

Batch training: Stochastic gradient descent:

o1 Calculate the loss for the whole o Pick one item

’rrdining set 1 Calculate the loss for this item

o1 Move in the direction of the gradient

1 Make one move in the correct for this item

direction 1 Each move does not have to be in

o1 Repeat (an epoch) the direction of the gradient for the

whole set.
1 Can be slow

71 But the overall effect may be good

1 Can be faster



Variations of gradient descent
N

Mini-batch training:

Solvers/optimizers

1 There are various different

o1 Pick a subset of the training set of
a certain size

o1 Caleulate the loss for this subset solvers and optimizers for

o1 Make one move in the direction of gradient descent (which you

this gradient may meet later).
o1 Repeat (an epoch)

71 A good compromise between the 0 Observe that you may specity

two extremes between solvers in scikit-learn.

71 (The other two are subcases of
this)



Regularization

LogReg is prone to overfitting to the training data

Hence apply regularization

W=argmax »_log P(c'| f') - aR(w)
W =1

The regularization punishes large weights

Most common is L2-regularization R(W) = Y0 w/

Alternative: L1-regularization R(W) = )i |w;]



scikit-learn — LogisticRegression

LogisticRegression(penalty="12’, .., C=1.0, ..

By adjusting C, you may get better results
The optimal C varies from task to task
Uses L2-regularization as default

Whether L1 or L2 may depend on the learner



Example: Features for sent. classification in LR
I

Var Definition Value in Fig. 5.2
X count(positive lexicon) < doc) 3
xr;  count(negative lexicon) = doc) 2
s { 1 if “no™ e doc ]
0 otherwise
xy  count(lst and 2nd pronouns < doc) 3
s { 1 if “I" e doc 0
0 otherwise

x5 log{word count of doc) Ini64) =4.15
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Multinomial Logistic Regression

Also called maximum entropy (maxent) classifier, or soffmax regression

With one class we
eV_")'Y 1

considered P(C|x) = - =

+eWX  14+e™WX

- BWJ—C) 1
and implicitly P(nonC|x) = 1 — =

1+eWX  14eW¥

° ° ° e .
We now consider a linear expression w;, for each class C;,i = 1, ..., k

The probability for each class is then given by the soffmax function

R er-x
P(Cj‘x): kK owii

1=1



Example: softmax

4 different classes corresponding to
the dots below the O-line

For each of them a corresponding
softmax curve

10 4

08 -

This expresses the probability of the

06 - observation belonging to this class

For classification of a new
observation: Choose the class with
the largest probability.

In 3D

120 140 160 180 00 A surface for each class

04 -

02 -

0.0 4

| I | - [ ]
= . e s

- Ll

They cut each other along straight lines
= decision boundaries



52

Decision surface of LogisticRegression (multinomial)




Training Multinomial Logistic Regression
N

01 This is done similarly to the binary task

1 We skip the details



Features in Multinomial LR

]

WJ°X

. ° - e
Multinomial LR constructs P(Cj‘x) = == for each class.
i=1 € !

This corresponds to one linear expression v_l}l-, foreach C;,i =1, ...,k
Alternatively, think of this

different features for each class:

notation f;(C, x) feature j for the class C and observation x

and one set of weights for the features and classes:

In scikit-learn we write features as before and LogisticRegression
constructs the match with labels during training
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Categories as numbers

In the naive Bayes model we could handle categorical values directly,
e.g., characters:

—_— kT

What is the probability that c_n = ‘z
But many classifier can only handle numerical data

How can we represent categorical data by numerical data?

(In general, it is not a good idea to just assign a single number to each
category: M




Data representation

-m

Assume the
following feature  f1
example
type cat cat Bool num
(num)
Value a, b, c X, Y True, 0,1,2, Classl,
set False 3, ... class2

. : [({'f1": 'd’, 'f2': 'Z', '£3'": True, 'f4": 5}, 'class_1"), \
L ({'F1":'b', '¥2": '\, '£3": False, 'f4": 2}, 'class_2"), «=-f Sl
in NLTK - instances
({'f1%:'c’, 'f2": 'x', 'f3": False, 'f4': 4}, 'class_1")]

. Ve




One-hot encoding

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

-1 Represent categorical variables
as vectors/arrays of numerical
variables



Representation in scikit: “one hot” encoding

[({'f1": 'd’, 'f2" 'Z', '£3": True, 'f4": 5}, 'class_1'),
({'f1':'p’, 'f2": 'Z', 'f3": False, 'f4": 2}, 'class_2"), 3 training
({'f1':'c", '£2": 'X', 'f3": False, 'f4": 4}, 'class_1")] instances

~ A\ =
4 features

X_train:

array([[ 1., 0., 0., 0., 1., 1., 5], One-hot encoding
[0, 1., 0, O, 1., 0. 2], > 3 training q b c
instances
. 0., 1., 1., 0., 0, 4.]]) (1,0, O] 0, 1,] [0, 0, 1

[0, 0O '

train_target: ['class_1', 'class_2', 'class_1"], or

train_target: [1, 2, 1]

3 corresponding classes




Converting a dictionary
B

1 We can construct the data to scikit directly
o1 Scikit has methods for converting Python-dictionaries /NLTK-format

fo arrays
»train_data = [inst[0] for inst in train] 1. Constructs (=fit}
» train_target = [inst[1] for inst in train] repr. format

» v = DictVectorizer() 2. Transform

X_train=v.fit_transform(train_data) /

~
~

Transform

, X_test=v.transform(test_data) Use same v as
for train

~




Multinomial NB in scikit

We can construct the data to scikit directly

Scikit has methods for converting text to bag of words arrays

. —_—r" n
train_data=["en rose er en rose",
"anta en rose er en fiol"]

v = CountVectorizer()

X_train=v.fit_transform(train_data)

print(X_train.toarray())
[02102]
[12111]]

Positions corresponds to [antq, en, er, fiol, rose]



Sparse vectors

One hot encoding uses space

26 English characters:
Each is represented as a vector
with 25 ‘0’-s and a singel ‘1’
Bernoulli NB text. classifier with
2000 most frequent words

Each word represented by o
vector with 1999 ‘0’-s and a
singel ‘1°.

scikit-learn uses internally o
dictionary-like representation
for these vectors, called "sparse
vectors”
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Generative classifiers

P(< f1 :V1’ f2 :VZ""’ fn :Vn>|sm)P(Sm)
P« 1:1 =V, 1:2 =Vyseeny fn :Vn>)

(s I{ =0 F, =y T, =V,) =

7 Naive Bayes is an example of a generative Example: is this picture of a dog or cat?
classifier TN e
1 On its way to deciding which class is most Generate a picture of a dog
probable: i.e. make a probability distribution over all
o1 It estimates the probability of the observation picture: how probable is it you will draw a dog
given the class like this?
o It "generates” the observation with a certain Do the same for a cat
probability

1 For an observation:
= which model ascribes the highest probability
o x the probability of the model




Generating positive movie reviews

First choose the length of the Observation:
review, say n=1000 words Whether we compare to
Then choose the first word negative film reviews of positive

book reviews, we will use the

according to the probability same features

distribution P(w | 'pos') e.g.
P(w = the|pos) = 0.1

N . 31 Footnote:
P(w = pitt|pos) = m— o
The multinomial text model
Then choose word 2, etc. up to tacitly suppress "choose length
word 1000 of document”, and assumes it is

independent of class



Discriminative classifiers

A discriminative classifier considers the probability of the class given
the observation directly.
E.g. a discriminative text classifier may focus on the features:
terrible and terrific for pos. vs. neg film review
director and author for pos. film vs. pos. book review
The discriminative classifier
may be more efficient
but gives less explanation

and may eventually focus on wrong features
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Logistic regression and Naive Bayes

68
-1 Both are probability-based

1 In the two-class case they consider whetherP(C|x) > P(notC|x)
P(C|%)

P(notC|f)>O

7 equivalently whether log



Comparing NB and LogReg

NB is a generative classifier:

It has a model of how the data are generated
P(C)P(f|C) = P(f,C)
LogReg is a discriminative classifier

It only considers the conditional probability P(C|f)



Logistic reg. and Naive Bayes are log-linear

P(C]X)
P(notC|x)

P(C|X) _
For NB: lOgP(notC|£) =

log P(c, | f)—log P(c, | f) =log P(c,) + > log P(f; |c,) {log P(c,) + > log P(f; | c§> 0
=1 j=1

whether log >0

one particular linear expression,
P(C|%)
P(notcC|x)

For LR: log = Wqo + WiX{ + WoXy + -+ WpX,

the linear expression that fits the training data best



Naive Bayes is an instance of log-linear

P(C|x)
P(notC|x)

o LR: log =Wy + WiX{ +WyrXo + -+ WyX,

-1 NB: |ogp(cl|?)—|ogp(c2|?)=|ogp(cl)+_§n)|ogP(fj|c1) IogP(Cz)+ilog P(f, |C§>0
- Where: : i
wo = P(c1) — P(cy)

w; = P(fj [c1) = P(f |c2)



Comparing NB and LogReg

NB is an instance of LogReg,

i.e. one possible choice of weights

LogReg will do at least as well as NB on the training data

(without any smoothing)
When the independence assumptions of NB holds, NB will do as well as
LogReg
When the independence assumptions does not hold, NB may put too much
weight on some features

LogReg will not do this: If we add features that depend on other features,
LogReg will put less weight on them



Ablation studies

One way to see which features are important for LogReg
Start with a classifier which uses many features
Remove one feature f1, retrain and see whether it has an effect

Remove another feature f2, instead of f1 or in addition to f1, and study the
effect
Beware of the possibility:

Removing f1 only has little effect

Removing f2 only has little effect

Removing both f1 and f2 might have a large effect
Why is this so?



