
IN4080 – 2020 FALL
NATURAL LANGUAGE PROCESSING

Jan Tore Lønning

1
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Logistic Regression
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Logistic regression
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In natural language processing, logistic regression 

is the baseline supervised machine learning 

algorithm for classification, and also has a very

close relationship with neural networks.

(J&M, 3. ed., Ch. 5)



Relationships
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Machine learning

 Last week: Naive Bayes

 Probabilistic classifier

 Categorical features

 Today

 A geometrical view on classification

 Numeric features

 Eventually see that both Naive Bayes and Logistic regression can fit 

both descriptions
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Notation

When considering numerical features, it is usual to use

 𝑥1, 𝑥2, … , 𝑥𝑛 for the features, where

 each feature is a number

 a fixed order is assumed

 𝑦 for the output value/class

 In particular, J&M use

 ො𝑦 for the predicted value of the learner, ො𝑦 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛
 𝑦 for the true value

 (where Marsland, IN3050, uses 𝑦 and 𝑡, resp.)
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Machine learning

 In NLP, we often consider 

 thousands of features (dimension)

 categorical data

 These are difficult to illustrate by figures

 To understand ML algorithms 

 it easier to use one or two features, 2-3 dimensions, to be able to draw 

figures

 and then to use numerical data, to get non-trivial figures
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Scatter plot example

 Two numeric features

 Three classes

 We may indicate the classes by 

colors or symbols
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Classifiers – two classes

 Many classification methods are 

made for two classes

 And then generalizes to more 

classes

 The goal is to find a curve that 

separates the two classes

 With more dimensions: to find a 

(hyper-)surface
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Linear classifiers

 Linear classifiers try to find a 
straight line that separates the 
two classes (in 2-dim)

 The two classes are linearly 
separable if they can be 
separated by a straight line

 If the data isn’t linearly 
separable, the classifier will make 
mistakes.

 Then: the goal is to make as few 
mistakes as possible
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One-dimensional classification

 A linear separator is 

simply a point

 An observation is 

classified as 

 class 1 iff x>m

 Class 0 iff x<m
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Linear classifiers: two dimensions

 a line has the form ax+by+c=0

 ax + by < -c for red points

 ax + by > -c for blue points
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More dimensions

 In  a 3 dimensional space (3 

features) a linear classifier 

corresponds to a plane

 In a higher-dimensional space it 

is called a hyper-plane
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Linear classifiers: n dimensions

 A hyperplane has the form

 σ𝑖=1
𝑛 𝑤𝑖𝑥𝑖 + 𝑤0 = 0

 which equals 

 σ𝑖=0
𝑛 𝑤𝑖𝑥𝑖 =

𝑤0, 𝑤1, … , 𝑤𝑛 ∙ 𝑥0, 𝑥1, … , 𝑥𝑛 = 𝑤 ∙ Ԧ𝑥 = 0,

 assuming 𝑥0 = 1

 An object  belongs to class C iff

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥 > 0

 and to not C, otherwise
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Linear Regression

 Data:

 100 males: height and weight

 Goal:

 Guess the weight of other males 

when you only know the height
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Linear Regression

 Method:

 Try to fit a straight line to the 

observed data

 Predict that unseen data are 

placed on the line

 Questions:

 What is the best line?

 How do we find it?
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Best fit

 To find the best fit, we compare each 

 true value 𝑦𝑖 (green point)

 to the corresponding predicted value ො𝑦𝑖
(on the red line)

 We define a loss function

 which measures the discrepancy between 

the 𝑦𝑖-s and ො𝑦𝑖-s

 (alternatively called error function)

 The goal is to minimize the loss
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Loss for linear regression

For linear regression, usual to use:

 Mean square error:

1

𝑚
෍

𝑖=1

𝑚

𝑑𝑖
2

 where 

 𝑑𝑖 = 𝑦𝑖 − ො𝑦𝑖

 ො𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏

 Why squaring?

 To not get 0 when we sum the diff.s.

 Large mistakes are punished more severly
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Learning = minimizing the loss

 For lin. regr. there is a formula

 (this is called an analytic 
solution)

 But slow with many (millions) of 
features

 Alternative:

 Start with one candidate line

 Try to find better weights

 Use Gradient Descent

 A kind of search problem
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Gradient descent

 We use the derivative of the 

(mse) loss function to point in 

which direction to move

 We are approaching a unique 

global minimum

 For details:

 IN3050/4050 (spring)

22



Linear regression: higher dimensions

 Linear regression of more than two variables 

works similarly

 We try to fit the best (hyper-)plane

ො𝑦 = 𝑓 𝑥0, 𝑥1, … , 𝑥𝑛 =෍

𝑖=0

𝑛

𝑤𝑖𝑥𝑖 = 𝑤 ∙ Ԧ𝑥

 We can use the same mean square error:

1

𝑚
෍

𝑖=1

𝑚

𝑦𝑖 − ො𝑦𝑖
2
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Gradient descent

 The loss function is convex: you 

are not stuck in local minima

 The gradient 

 (= the partial derivatives of the 

loss function)

 tells us in which direction we 

should move

 = how long steps in each

direction
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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From regression to classification

 Goal: predict gender from two 

features: height and weight
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Predicting gender from height

 First: 

try to predict from height only

 The decision boundary should 

be a number: c

 An observation, n, is classified

 1(male) if height_n > c

 0 (not male) otherwise

 How do we determine c?
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Digression

By the way

 How good are the best 

predictions og gender given 

height?

 Given weight?

 Given height+weight?
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Linear regression is not the best choice

 How do we determine c?

 We may use linear regression:

 Try to fit a straight line

 The observations has 𝑦 ∈ 0,1

 The predicted value ො𝑦 = 𝑎𝑥 + 𝑏

 Possible, but

 Bad fit, 𝑦𝑖 and ො𝑦𝑖are different 

 Correctly classified objects 

contribute to the error (wrongly!)

29
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The ‘’correct’’ decision boundary

 The correct decision boundary 

is the Heaviside step function

 But:

 Not a differentiable function

 can't apply gradient descent
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The sigmoid curve

 An approximation to the ideal 

decision boundary

 Differentiable

 Gradient descent

 Mistakes further from the decision 

boundary are punished harder
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An observation, n, is classified

• male if f(height_n) > 0.5

• not male otherwise



The logistic function

 𝑦 =
1

1+𝑒−𝑧
=

𝑒𝑧

𝑒𝑧+1

 A sigmoid curve

 But also other functions make 
sigmoid curves e.g. 𝑦 = tanh 𝑧

 Maps (−∞,∞) to 0,1

 Monotone

 Can be used for transforming 
numeric values into 
probabilities

32
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Exponential function  - Logistic function
33

𝑦 =
1

1 + 𝑒−𝑧
=

𝑒𝑧

𝑒𝑧 + 1
𝑦 = 𝑒𝑧

//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg


The effect

 Instead of a linear classifier which 
will classify some instances 
incorrectly

 The logistic regression will ascribe 
a probability to all instances for 
the class C (and for notC)

 We can turn it into a classifier by 
ascribing class C if 𝑃 𝐶 Ԧ𝑥 > 0.5

 We could also choose other cut-
offs, e.g. if the classes are not 
equally important

34
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Logistic regression

 Logistic regression is probability-based

 Given to classes C, not-C, 
start with 𝑃 𝐶 Ԧ𝑥 and 𝑃 𝑛𝑜𝑡𝐶 Ԧ𝑥 given a feature vector Ԧ𝑥

 Consider the odds
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
=

𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)

 If this is >1, Ԧ𝑥 most probably belongs to C

 It varies between 0 and infinity

 Take the logarithm of this log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)

 If this is >0, Ԧ𝑥 most probably belongs to C

 It varies between minus infinity and pluss infinity
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Logistic regression

 log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
> 0 ?

 Try to find a linear expression for this log
𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
= 𝑤 ∙ Ԧ𝑥 > 0

 Given such a linear expression 



𝑃(𝐶| Ԧ𝑥)

1−𝑃(𝐶| Ԧ𝑥)
= 𝑒𝑤∙ Ԧ𝑥

 𝑃 𝐶 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥
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With  two features

 Two features: 𝑥1, 𝑥2
 Apply weights: 𝑤0, 𝑤1, 𝑤2

 Let 𝑦 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2
 Apply the logistic function, 𝜎, 

and check whether

 𝜎 𝑦 =
1

1+𝑒−𝑦
> 0.5

37

From IDRE, UCLA

Geometrically: 

Folding a plane along a sigmoid

The decision boundary is the intersection of 

this surface and the plane 0.5: a straight line



Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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How to find the best curve?

 What are the best choices of a

and b in 
1

1+𝑒− 𝑎𝑥+𝑏 ?

 Geometrically a and b

determine the 

 Midpoint

 Steepness

 of the curve
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Learning in the logistic regression model

 A training instance consists of 

 a feature vector Ԧ𝑥

 a label (class), 𝑦, which is 1 or 0.

 With a set of weights, 𝑤, 
the classifier will assign 

 ො𝑦 = 𝑃 𝐶 = 1 Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥

to this training instance Ԧ𝑥

 where 𝑃 𝐶 = 0 Ԧ𝑥 = 1 − ො𝑦

 Goal: find 𝑤 that maximize  
𝑃 𝐶 = 𝑦 Ԧ𝑥 of all training inst.s
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Loss function

 In machine learning we have to 

determine an objective for the 

training.

 We can do that in terms of a 

loss function.

 The goal of the training is to 

minimize the loss function.

 Example: linear regression

 Loss: Mean Square Error

 We can choose between 

various loss functions.

 The choice is partly determined 

by the learner.

 For logistic regression we 

choose (simplified) cross-

entropy loss
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Cross-entropy loss

 The underlying idea is that we want to maximize the joint probability 

of all the predictions  we make

ς𝑖=1
𝑚 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖)), over all the training data i = 1, 2, …m

 This is the same as maximizing

 logς𝑖=1
𝑚 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖)) = σ𝑖=1

𝑚 log 𝑃 𝑦(𝑖) Ԧ𝑥(𝑖))

 This is the same as minimizing

 𝐿𝐶𝐸 𝑤 = − logς𝑖=1
𝑚 𝑃(𝑦 𝑖 | 𝑥(𝑖)) = σ𝑖=1

𝑚 − log𝑃(𝑦(𝑖)| Ԧ𝑥(𝑖))

 Which is an instance of what is called the cross-entropy loss
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Gradient descent

 To minimize the loss function we 

can use gradient descent.

 Good news:

 The loss function is convex: you 

are not stuck in local minima

 We know which way to go

 We skip the details of sec. 5.4
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Variations of gradient descent

 Calculate the loss for the whole 

training set

 Make one move in the correct 

direction

 Repeat (an epoch)

 Can be slow

 Pick one item

 Calculate the loss for this item

 Move in  the direction of the gradient 
for this item

 Each move does not have to be in 
the direction of the gradient for the 
whole set.

 But the overall effect may be good

 Can be faster

44

Batch training: Stochastic gradient descent:



Variations of gradient descent

 Pick a subset of the training set of 
a certain size

 Calculate the loss for this subset

 Make one move in the direction of 
this gradient

 Repeat (an epoch)

 A good compromise between the 
two extremes

 (The other two are subcases of 
this)

 There are various different 

solvers and optimizers for 

gradient descent (which you 

may meet later).

 Observe that you may specify 

between solvers in scikit-learn.

45

Mini-batch training: Solvers/optimizers



Regularization

 LogReg is prone to overfitting to the training data

 Hence apply regularization

 The regularization punishes large weights

 Most common is L2-regularization 𝑅 𝑊 = σ0
𝑛𝑤𝑖

2

 Alternative: L1-regularization 𝑅 𝑊 = σ0
𝑛 |𝑤𝑖|

46
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scikit-learn – LogisticRegression
47

 LogisticRegression(penalty=’l2’, …, C=1.0, …)

 By adjusting C, you may get better results

 The optimal C varies from task to task

 Uses L2-regularization as default

 Whether L1 or L2 may depend on the learner



Example: Features for sent. classification in LR
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Multinomial Logistic Regression

 Also called maximum entropy (maxent) classifier, or softmax regression

 With one class we 

 considered 𝑃 𝐶 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥

 and implicitly 𝑃 𝑛𝑜𝑛𝐶 Ԧ𝑥 = 1 −
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒𝑤∙𝑥

 We now consider a linear expression 𝑤𝑖, for each class 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 The probability for each class is then given by the softmax function

𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒𝑤𝑗∙ Ԧ𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙ Ԧ𝑥
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Example: softmax

 4 different classes corresponding to 
the dots below the 0-line

 For each of them a corresponding 
softmax curve

 This expresses the probability of the 
observation belonging to this class

 For classification of a new 
observation: Choose the class with 
the largest probability.

 In 3D

 A surface for each class

 They cut each other along straight lines

 = decision boundaries
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https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_multinomial.html



Training Multinomial Logistic Regression

 This is done similarly to the binary task

 We skip the details
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Features in Multinomial LR

 Multinomial LR constructs 𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒
𝑤𝑗∙𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙𝑥

for each class.

 This corresponds to one linear expression 𝑤𝑖, for each 𝐶𝑖 , 𝑖 = 1,… , 𝑘

 Alternatively, think of this

 different features for each class:

 notation 𝑓𝑗(𝐶, 𝑥) feature j for the class C and observation x

 and one set of weights for the features and classes:

 In scikit-learn we write features as before and LogisticRegression

constructs the match with labels during training
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Categories as numbers

 In the naive Bayes model we could handle categorical values directly, 

e.g., characters:

 What is the probability that c_n = ‘z’

 But many classifier can only handle numerical data

 How can we represent categorical data by numerical data?

 (In general, it is not a good idea to just assign a single number to each 

category: ‘a’1, ‘b’2, ‘c’ 3, …)
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Data representation

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

57

4 features

Representation 

in NLTK

class

3 training

instances

4 different featues Classes

feature f1 f2 f3 f4

type cat cat Bool

(num)

num

Value

set

a, b, c x, y True, 

False

0, 1, 2, 

3, …

Class1, 

class2

Assume the 

following 

example



One-hot encoding
58

feature 1 feature 2

a b c x y

(1,0,0) (0,1,0) (0,0,1) (1,0) (0,1)

 Represent categorical variables 

as vectors/arrays of numerical 

variables



Representation in scikit: ‘’one hot’’ encoding

[({'f1': 'a', 'f2': 'z', 'f3': True, 'f4': 5}, 'class_1'),

({'f1': 'b', 'f2': 'z', 'f3': False, 'f4': 2}, 'class_2'),

({'f1': 'c', 'f2': 'x', 'f3': False, 'f4': 4}, 'class_1')]

X_train:

array([[ 1.,  0.,  0.,  0.,  1.,  1.,  5.],

[ 0.,  1.,  0.,  0.,  1.,  0.,  2.],

[ 0.,  0.,  1.,  1.,  0.,  0.,  4.]])

train_target: ['class_1', 'class_2', 'class_1'], or

train_target: [1, 2, 1]
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4 features

scikit

NLTK

7 features

class

3 corresponding classes

3 training

instances

3 training

instances

One-hot encoding

a b c

[1, 0, 0] [0, 1, ] [0, 0, 1



Converting a dictionary

 We can construct the data to scikit directly

 Scikit has methods for converting Python-dictionaries/NLTK-format 
to arrays

» train_data = [inst[0] for inst in train]

» train_target = [inst[1] for inst in train]

» v = DictVectorizer()

» X_train=v.fit_transform(train_data)

» X_test=v.transform(test_data)

60

1. Constructs (=fit) 

repr. format

2. Transform

Transform

Use same v as 

for train



Multinomial NB in scikit

 We can construct the data to scikit directly

 Scikit has methods for converting text to bag of words arrays

 Positions corresponds to [anta, en, er, fiol, rose]

» train_data=["en rose er en rose", 
"anta en rose er en fiol"]

» v = CountVectorizer()

» X_train=v.fit_transform(train_data)

» print(X_train.toarray())
[[0 2 1 0 2]
[1 2 1 1 1]]
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Sparse vectors

 One hot encoding uses space

 26 English characters:

 Each is represented as a vector 

with 25 ‘0’-s and a singel ‘1’

 Bernoulli NB text. classifier with 

2000 most frequent words

 Each word represented by a 

vector with 1999 ‘0’-s and a 

singel ‘1’.

 scikit-learn uses internally a 

dictionary-like representation 

for these vectors, called ’’sparse 

vectors’’
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Generative classifiers

 Naive Bayes is an example of  a generative 
classifier

 On its way to deciding which class is most 
probable: 

 It estimates the probability of the observation 
given the class

 It "generates" the observation with a certain 
probability

 For an observation: 

 which model ascribes the highest probability

 x the probability of the model

 Example: is this picture of a dog or cat?

 To decide:

 Generate a picture of a dog

 i.e. make a probability distribution over all 
picture: how probable is it you will draw a dog 
like this?

 Do the same for a cat

64

 
 

 nn

mmnn

nnm
vfvfvfP

sPsvfvfvfP
vfvfvfsP






,...,,

)(|,...,,
,...,,|

2211

2211

2211



Generating positive movie reviews

 First choose the length of the 
review, say n=1000 words

 Then choose the first word 

 according to the probability 
distribution P(w | 'pos') e.g.

 ෠𝑃 𝑤 = 𝑡ℎ𝑒 𝑝𝑜𝑠) = 0.1

 ෠𝑃 𝑤 = 𝑝𝑖𝑡𝑡 𝑝𝑜𝑠) =
31

798 742

 Then choose word 2, etc. up to 
word 1000

 Observation:

 Whether we compare to 
negative film reviews of positive 
book reviews, we will use the 
same features

 Footnote:

 The multinomial text model 
tacitly suppress "choose length 
of document", and assumes it is 
independent of class
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Discriminative classifiers

 A discriminative classifier considers the probability of the class given 

the observation directly.

 E.g. a discriminative text classifier may focus on the features: 

 terrible and terrific for pos. vs. neg film review

 director and author for pos. film vs. pos. book review

 The discriminative classifier 

 may be more efficient

 but gives less explanation

 and may eventually focus on wrong features
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Today 

 Linear classifiers

 Linear regression

 Logistic regression

 Training the logistic regression classifier

 Multinomial Logistic Regression

 Representing categorical features

 Generative and discriminative classifiers

 Logistic regression vs Naïve Bayes
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Logistic regression and Naive Bayes

 Both are probability-based

 In the two-class case they consider whether𝑃 𝐶 Ԧ𝑥 > 𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)

 equivalently whether log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
>0
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Comparing NB and LogReg

 NB is a generative classifier:

 It has a model of how the data are generated

 𝑃 𝐶 𝑃 Ԧ𝑓 𝐶 = 𝑃( Ԧ𝑓, 𝐶)

 LogReg is a discriminative classifier

 It only considers the conditional probability 𝑃 𝐶| Ԧ𝑓
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Logistic reg. and Naive Bayes are log-linear

 whether log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
>0

 For NB: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
=

 one particular linear expression, 

 For LR: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛

 the linear expression that fits the training data best 
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Naive Bayes is an instance of  log-linear

 LR: log
𝑃(𝐶| Ԧ𝑥)

𝑃(𝑛𝑜𝑡𝐶| Ԧ𝑥)
= 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛

 NB:

 Where:

𝑤0 = 𝑃 𝑐1 − 𝑃(𝑐2)

𝑤𝑖 = 𝑃 𝑓𝑗 𝑐1) − 𝑃 𝑓𝑗 𝑐2)
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Comparing NB and LogReg

 NB is an instance of LogReg, 

 i.e. one possible choice of weights

 LogReg will do at least as well as NB on the training data 

 (without any smoothing)

 When the independence assumptions of NB holds, NB will do as well as 
LogReg

 When the independence assumptions does not hold, NB may put too much 
weight on some features

 LogReg will not do this: If we add features that depend on other features, 
LogReg will put less weight on them
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Ablation studies
73

 One way to see which features are important for LogReg

 Start with a classifier which uses many features

 Remove one feature f1, retrain and see whether it has an effect

 Remove another feature f2, instead of f1 or in addition to f1, and study the 
effect

 Beware of the possibility:

 Removing f1 only has little effect

 Removing f2 only has little effect

 Removing both f1 and f2 might have a large effect

 Why is this so?


